
Grover’s Algorithm 

 

Introduction 

Grover’s algorithm is a quantum search algorithm that was developed by Lor Grover in 1996. 

The purpose of this algorithm is to find a unique input to some function (a “black box”) that 

gives a particular output. In other words, Grover’s algorithm finds a marked item out of some 

search space. 

The usefulness of this algorithm is that it applies to various NP-complete problems and does so 

in a faster time than a classical computation. NP complete refers to the set of decision problems 

(problems that can be posed as yes-or-no questions) whose solutions can be checked in 

polynomial time. Classically, we expect an unstructured search problem to be solved in O(N) 

evaluations while the Grover’s algorithm can be solved in O(√𝑁) evaluations, which is 

significant as N gets larger, using principles of quantum mechanics—particularly superposition. 

I will first go into more detail of this algorithm and then show how it applies to the specific 

problem that I have chosen to solve. 

 

The Algorithm 

The general idea behind this algorithm is that when one is given a particular search space, this 

algorithm can check whether a particular element in that search space is “correct”. Examples 

would be having a list of elements (the search space) and checking if the particular element is 

equal to the one that you are searching for in the list of elements, or possible arrangements of 

people (the search space) and checking to see whether a particular arrangement of people satisfy 

the given constraints. 

Gates 

Below are images of the gates that are relevant in our circuit—their matrix representation and 

their visual representation, along with a short description of their essence. 

Hadamard Gate 

Symbol:         Matrix:        Description: 

                  

 

 

 

 

  

Acts on single qubits by putting 

them in superposition. It maps 

them as follows: 

         



CZ Gate 

Symbol:          Matrix:     Description: 

 

 

X (NOT) Gate 

Symbol:          Matrix:              Description: 

 

 

 

 

 

Z Gate 

Symbol:        Matrix:               Description: 

 

 

 

 

 

TOFFOLI/ CCNOT Gate 

Symbol: 

 

 
 

 

   

The CZ-gate is a Controlled-Z gate thus 

acting on 2 qubits. The mapping is: 

|00 > →  |00 >  

|01 > →  |01 > 

|10 > →  |10 > 

|11 > →  −|11 > 

 

 

 

 

 

 

 

 

 
 

The Pauli-X gate acts on a single qubit 

and rotates it around the x-axis of the 

Bloch Sphere by pi-radians. This is 

analogous to a NOT-gate for classical 

computers in which it flips the qubits—it 

maps the |0> basis ket to the |1> basis ket 

and the |1> basis ket to the |0> basis ket. 

   
 

The Pauli-Z gate acts on a single 

qubit and rotates it as well. 

Specifically, it Pauli Z leaves the 

basis state |0> unchanged and maps 

|1> to -|1>. It is sometimes called 

phase-flip. 

    Description: 

At the bottom of the truth table one 

can see how the two last rows have 

different output compared to their 

input as the qubit_3 changes from 

0 to 1 or vice versa. This is the 

essence of the TOFFOLI Gate. 

 



Full Circuit 

While there are some variations  of the algorithm as the combinations of various gates can lead 

to a similar state such as in the different use of CZ or Toffoli gates (analogously to classical 

programming where one can arrive to the same answer using different methods), the general 

algorithm is displayed below: 

Alternative image of 2-qubit for comparison: 

As one can see, the difference between the first and the second image is the placement of Pauli-X 

gates and a Toffoli gate on the above image versus a simple CZ gate on the lower image. 

If we change the number of qubits or the number of iterations, similar patterns are observed 

therefore the image right above of the algorithm does not change too much. In particularly, 

altering the number of iterations simply duplicates (or triples etc.) the entire circuit, while 

altering the number of qubits extends another line similar as above, with the CZ and Toffoli 

connected to all qubits. One can see this when comparing the 2-qubit circuits above, with the 

three-qubit circuits below. 

 

 



3-Qubit Circuit of Grover’s Algorithm: 

I will be using a slightly altered version of this circuit in the problems that I am trying to solve. 

The reason for this will be evident when I describe Problem #2.  

The above is an alternative way of constructing a 3-qubit circuit. The difference between the 

previous 3-qubit circuit is that here they use a Toffoli Gate which naturally acts on 3 qubits (it is 

a 3 x 3 matrix).  

 

 

 

 

 

 

 

 

 

 



How it works 

Full General Algorithm:  

Suppose you would like to locate the winner w from a list of N items.  

After initializing the qubits into a uniform superposition over all states using the Hadamard 

gates, one then creates an Oracle which will add a negative phase to the solution state essentially 

marking the desired state. 

This is represented with the Uw operator.  

 

So, for example, if your winning/desired state w is the ‘11’ qubit, then applying this operator, 

you will have:  

 

 

 

 

The next part of the circuit is doing amplitude amplification.  

We begin with the superposition state:  

 

 

After applying the reflection operator Uw, we now have a state that has reflected across some 

hypothetical state vector |𝑠′ > —which we create to be orthogonal to our winning state |𝑤 >.  

 

 the |11> state 

 

 The f(x) is a function that equals one if the 

proposed x is the winning state and 0 otherwise. 

 



We then apply a second reflection, Us, which reflects the |𝑠 >  back across the |𝑠′ > axis and 

closer to the winning state, as the combination of two reflections create a rotation from the 

imaginary |𝑠′ > state to the winning state. It is this action is what amplifies the amplitude of the 

state that we are attempting to find.  

The above explanation is demonstrated 

visually (and is the geometric proof for the 

algorithm) in the image on the right →  

The Us operator is known as the Diffusion 

Operator:  

 

 

 

In summary, doing this process several 

times will bring the s state closer to our w 

winning state by amplifying the marked 

elements while the amplitude of the 

unmarked elements decreases. In fact, the number of such rotations are √𝑁 times, hence speed 

up of Grover’s search algorithm compared to classically.  

Problems 

Problem #1: Finding an element from a List 

Before getting into a problem that shows an exact application of Grover’s Algorithm, I want to 

show the basic idea of the algorithm by demonstrating the essence of this algorithm by using it to 

find an element from a list. This is the basics of Grover’s Algorithm.  

Right is an example of the result of 

the problem in classical terms. I have 

the list, from which the user picks a 

number and the oracle function 

identifies if the user’s number 

matches the number in the list as it 

iterates through it. Classically, to 

find the number it will be on average 

N/2 times, where N is the number of 

elements in the list. 

In the code file I then proceed to show how one finds an element in a list using quantum 

computation. This will be analogous to the above example. The state we will search for is the 

|11> state. I build the circuit for Grover’s Algorithm, and then display the probabilistic results. 

 

 

 



First, I create the CZ gate which will be the Oracle for this 2-qubit example. I then also put 

Hadamard gates before the oracle to place the initial qubits in superposition. This is how this part 

of the circuit looks like: 

After this part, I check to see what the state-vector is—

which I expect it to be in a state of superposition. For 2 

qubits it would be as: 

½ (|00> + |01> + |10> - |11>)  

Each super-positioned part will have a probability of 0.5, 

and the last state will have a negative sign representing 

the fact that our desired state was reflected (i.e. the 

purpose of the oracle (CZ gate)).  

 

This is seen when I output the state-vector—the following 

array: 

I then proceed to create the second part of the circuit which is 

the Diffuser Operator. Separately it looks as:  

 

Solution to Problem #1 

Putting all these pieces gives the full circuit: 

Executing this circuit gives back 

the result of our desired state—

the state we were searching for—

in one call to the oracle.  

 

 

 

A more direct example between a classical computation and a quantum search computation is 

seen in the next example which involves three qubits; however, the process is the same. 

 

Problem #2: Arrangement of People 

The problem that we wish to address an optimization problem called the Satisfiability Problem—

problems that have specific conditions/constraints and you determine what is the most optimal 

outcome with those constraints. 

 

 

 

 

 



We try to determine the best possible arrangement of friends with a set of constraints. The 

problem is: 

Suppose you want to invite friends A, B, and C, to your dinner party. You order them two 

taxi’s—taxi 0 and taxi 1. The constraints are that A and B are friends, while A and C are enemies, 

and B and C are also enemies. The question is: how do you maximize the friend pairs and 

minimizing enemy pairs in the taxi’s?  

To construct the solution, let’s list the possible combinations. We can see all possible 

combinations if we write out in the following way: 

[A, B, C] with each position holding 0 or 1. That is, if A is in taxi 0, B is in taxi 1 and C is in taxi 

0, we can write [0, 1, 0].  

All possible combinations:  

[0, 0, 0] ; [1, 0, 0] ; [0, 1, 0] ; [0, 0, 1] ; [1, 1, 0] ; [1, 0, 1] ; [0, 1, 1] ; [1, 1, 1]   

This is correct as 23 = 8 possibilities.  

Which of these combinations are acceptable?  

Given the constraints, A and C, as well as B and C cannot be in the same taxi (since they are 

enemies) therefore if they have the same number, we can exclude these as satisfying possibilities.  

By inspection, we see that there exist two possible 

states that satisfy the constraints: [0, 0, 1] & [1, 1, 0]. 

Therefore, let’s set the winning state as W1 = 001 and 

W2 = 110.  Now we must use Grover’s Search 

Algorithm to locate these two states. 

In my Taxi-Code, I first program this classically, as 

shown on the right. ➔  

The -1 and +1 are values as this problem can be 

phrased as a game, that is, if the combination of friends 

A, B and C are such that they do not follow the conditions, then the ‘score’ is determined to be -1 

for this value. However, if the combination is a good one (i.e. meets all the requirements) then it 

will be represented with a +1. Hence, one can see which combinations satisfy the conditions. The 

best options are shown to be the winning states as mentioned above: 001 and 110. 

The second part of the code I implement the Qiskit library and use this to create the circuit 

visually and find the winning states using Grover’s Algorithm.  

 



Before doing so however, I had to determine how the circuit of the oracle will be such that the 

states 110 and 001 can be obtained. After playing around on a circuit simulator, I discovered the 

circuit that will do this looks as follows: 

The main thing to note is that in order to get these specific winning states, we must have the 

oracle with a controlled-Z gate between qubit-1 and qubit-3, qubit-3 and qubit-2, and between 

qubit-2 and qubit-1, along with a Pauli-Z gate on qubit-1. The Diffuser operator remains standard 

(since that simply amplifies the result that we desire). 

In my code, I initialize the qubits into a superposition by applying Hadamard gates onto all three 

qubits. I then create the oracle with the CZ- and Z-gates as already described to be necessary in 

order to find the two states that we are searching for, by flipping their sign. This results in a total 

wavefunction being: 

 
1

√8
(|000 > −|001 > +|011 > +|100 > +|101 > −|110 > +|111 >) 

I proceed to make a diffuser by creating a 

function that puts the following gates in 

the precise order: Hadamard, Pauli-X, 

MCT (Multi-Controlled Toffoli), Pauli-X, 

and Hadamard. I turn both the oracle and 

the diffuser into their own whole gates and 

draw the circuit, which looks as: 

 

 



I proceed by first running the circuit on a 

backend simulator (i.e. not a real quantum 

computer) to see if I would get the out puts of 

|001> and |110> with a certain probability. ➔  

 

Solution to Problem #2 

Finally, I run the circuit on a real quantum 

computer—in my run it was on the ibmq_lima 

device.  

See diagram on the right. 

The outputs were just as expected--

|001> and |110> with higher probability 

amplitudes than the other states, 

indicating that I have found the two 

states that I have been searching for.  

This is how Grover’s Algorithm is 

implemented and the results you get. 

 

 

Conclusion 

I demonstrated two examples: a 

two-qubit circuit and a three-qubit 

circuit which use Grover’s Algorithm to 

find a desired state. Thus, in essence, 

this is a search algorithm (as 

demonstrated with Problem #1). Grover’s algorithm can be used as an optimization algorithm to 

solve a type of problem that is called the Satisfiability Problem. These are problems in which 

you must find the optimal states of a system given certain conditions. Problem #2 was an 

example of this. The problem was a re-defined from a popular problem called “Grover’s Dinner 

Party”—where you wish to invite people to a dinner party however the conditions are such that 

some are enemies and some are friends—you must determine what would be the optimal 

combination(s). 

I demonstrated how this algorithm is used using quantum circuits and applying python to 

create those circuits, as well as comparing classical examples of the problems to demonstrate 

why Grover’s algorithm, and quantum computing in general, is a more optimal form of 

computation compared to classical computations—a major reason for the recent growth in 

quantum computing research in the past decade. 
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Grover’s_Problem_2_Taxi

May 4, 2022

[12]: #Classical Taxi Code---------------------------------------------

[6]: scores = []

#List all states as list [A,B,C] w/ each friend able to take 0 (not in taxi) or␣
↪→1 (in taxi)

states = [[1,1,1], [1,1,0], [1,0,1], [1,0,0], [0,1,1],
[0,1,0],[0,0,1],[0,0,0]]

for i in range(0,8):
individ_state = states[i]
#print(current_config)

#the state of each friend
A = individ_state[0]
B = individ_state[1]
C = individ_state[2]

score = 0

if (A == 0 and B == 0) or (A == 1 and B == 1):
score += 1

if (A == 0 and C == 0) or (A == 1 and C == 1):
score -= 1

if (B == 0 and C == 0) or (B == 1 and C == 1):
score -= 1

status = [individ_state, score] #will output the state & if its good (+1)␣
↪→or bad (-1)

#outputs all scores
scores.append(status)
print(status)

highest_score = scores[0][1]

1



print(highest_score) #prints -1
best_options = [] #list of best state (and their score)

for i in range(1,8):
if scores[i][1] >= highest_score: #if score is > -1

highest_score = scores[i][1] #this becomes the new score
best_options.append(scores[i]) #appends to list therefore␣

↪→giving highest score

print("Best Option(s): ")
print(best_options)

[[1, 1, 1], -1]
[[1, 1, 0], 1]
[[1, 0, 1], -1]
[[1, 0, 0], -1]
[[0, 1, 1], -1]
[[0, 1, 0], -1]
[[0, 0, 1], 1]
[[0, 0, 0], -1]
-1
Best Option(s):
[[[1, 1, 0], 1], [[0, 0, 1], 1]]

[7]: #Quantum Taxi Code--------------------------------------------------

[13]: #Import python libraries & Qiskit
import matplotlib.pyplot as plt
import numpy as np
from qiskit import IBMQ, Aer, assemble, transpile
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister
from qiskit.providers.ibmq import least_busy
from qiskit.visualization import plot_histogram

#Put all initial qubits into superposition
def initialize(qc, qubits):

for q in qubits:
qc.h(q)

return qc

#0,0,0 initial qubits
qc = QuantumCircuit(3)

#Adding CZ and Z gates appropriately in ORACLE
qc.cz(0, 2)
qc.cz(1, 2)
qc.cz(0,1)
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qc.z(0)
oracle = qc.to_gate()
oracle.name = "U$_\omega$" #name of oracle--i.e. the U_omega operator

#Diffuser Algorithm
def diffuser(nqubits):

qc = QuantumCircuit(nqubits)

for qubit in range(nqubits): #First part is applying H-gates
qc.h(qubit)

for qubit in range(nqubits): #Second part is applying X-gates
qc.x(qubit)

qc.h(nqubits-1)
qc.mct(list(range(nqubits-1)), nqubits-1) #Applying Toffoli gates␣

↪→(multi-CZ)
#mct stands for␣

↪→'multi-controlled-tofolli'
qc.h(nqubits-1)

#Applying X-gates and H-gates␣
↪→again

for qubit in range(nqubits):
qc.x(qubit)

for qubit in range(nqubits):
qc.h(qubit)

#Make the diffuser a gate (i.e. the␣
↪→U_s operator), and return it

U_s = qc.to_gate()
U_s.name = "U$_s$"
return U_s

#Setting up the circuit & acting it out
n = 3
grover_circ = QuantumCircuit(n)
grover_circ = initialize(grover_circ, [0,1,2]) #Initialized part acting on␣
↪→the 3 qbits (H qubits)

grover_circ.append(oracle, [0,1,2]) #Oracle part acting on the 3␣
↪→qbits

grover_circ.append(diffuser(n), [0,1,2]) #Diffuser part on 3 qbits

#Measure & Draw Circuit
grover_circ.measure_all()
grover_circ.draw()

[13]:

3



[10]: #Simulator
aer_sim = Aer.get_backend('aer_simulator')
transpiled_grover_circuit = transpile(grover_circ, aer_sim)
qobj = assemble(transpiled_grover_circuit)
results = aer_sim.run(qobj).result()
counts = results.get_counts()
plot_histogram(counts)

[10]:
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[11]: #Running Code on Real Device in the cloud at IBM

#First Load IBM Q account and get the least busy backend device
provider = IBMQ.load_account()
provider = IBMQ.get_provider("ibm-q")
device = least_busy(provider.backends(filters=lambda x: x.configuration().
↪→n_qubits >= 3 and

not x.configuration().simulator and x.
↪→status().operational==True))

print("Run on least busy device: ", device)

#Run circuit and monitor the execution of the job in the queue
from qiskit.tools.monitor import job_monitor
transpiled_grover_circuit = transpile(grover_circ, device, optimization_level=3)
job = device.run(transpiled_grover_circuit)
job_monitor(job, interval=2)

#Results
results = job.result()
answer = results.get_counts(grover_circ)
plot_histogram(answer)
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Run on least busy device: ibmq_lima
Job Status: job has successfully run

[11]:

[ ]:
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