
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2024.0429000

Harmonic Oscillator based Particle Swarm
Optimization
YURY CHERNYAK1, IJAZ AHAMED MOHAMMAD1, Nikolas Masnicak1, Matej Pivoluska1,2 and
Martin Plesch1,3
1Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 5807/9, 845 11 Karlova Ves, Bratislava, Slovakia
2QTlabs, Clemens-Holzmeister-Straße 6/6 Etage 6, 1100 Wien, Austria
3Matej Bel University, Národná ulica 12, 974 01 Banská Bystrica, Slovakia

Corresponding author: Ijaz Ahamed Mohammad (e-mail: fyziijaz@savba.sk).

We acknowledge the support of VEGA project 2/0055/23 and projects 09I03-03-V04-00425 and 09I03-03-V04-00685 of the Research and
Inovation Authority.

ABSTRACT Numerical optimization techniques are widely used in a broad area of science and technology,
from finding the minimal energy of systems in Physics or Chemistry to finding optimal routes in logistics or
optimal strategies for high speed trading. In general, a set of parameters (parameter space) is tuned to find
the lowest value of a function depending on these parameters (cost function). In most cases the parameter
space is too big to be completely searched and the most efficient techniques combine stochastic elements
(randomness included in the starting setting and decision making during the optimization process) with well
designed deterministic process. Thus there is nothing like a universal best optimization method; rather than
that, different methods and their settings are more or less efficient in different contexts. Here we present
a method that integrates Particle Swarm Optimization (PSO), a highly effective and successful algorithm
inspired by the collective behavior of a flock of birds searching for food, with the principles of Harmonic
Oscillators. This physics-based approach introduces the concept of energy, enabling a smoother and a more
controlled convergence throughout the optimization process. We test our method on a standard set of test
functions and show that in most cases it can outperform its natural competitors including the original PSO
as well as the broadly used COBYLA and Differential Evolution optimization methods.

INDEX TERMS Convergence, Global Optimization, Local Minima, Meta-heuristic optimization, Multi-
modal problems, Optimization algorithms, Particle swarm optimization, Swarm Intelligence

I. INTRODUCTION
Meta-heuristic optimization techniques are a popular way to
perform unconstrained minimization of complicated func-
tions. These techniques are often inspired by natural phe-
nomena, animal behaviors, or evolutionary concepts, making
them easy to learn, implement, and hybridize. In addition,
they are flexible and can be applied to various problems with-
out altering their structure, treating problems as black boxes
where only inputs and outputs matter. Unlike gradient-based
approaches, meta-heuristics optimize stochastically without
needing derivatives, making them suitable for complex prob-
lems for which derivatives are hard to obtain. Finally, their
stochastic nature also helps avoid local optima, making them
effective for challenging real-world problems with complex
search spaces.

Despite quite a large number of different meta-heuristic
methods published over the years, there is still an ongoing
research in this area with current approaches being enhanced

and new meta-heuristics being proposed frequently. This is
due to theNo Free Lunch (NFL) theorem [1], which states that
no single meta-heuristic is best for all optimization problems.
An algorithm might perform well on one set of problems but
poorly on another. This drives ongoing improvements and the
development of newmeta-heuristics, motivating our efforts to
create a new one.

Meta-heuristics can be classified into single-solution-
based and population-based methods. Single-solution meth-
ods, like Simulated Annealing [2], start with one candidate
solution that is improved iteratively. In contrast, population-
based methods, like Particle Swarm Optimization [3] (PSO),
begin with multiple solutions that are enhanced over itera-
tions. Advantages of population-based methods include in-
formation sharing among solutions, which leads to sudden
jumps to promising areas, mutual assistance in avoiding local
optima, and generally greater exploration compared to single-
solution algorithms.

VOLUME 11, 2023 1

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Population based meta-heuristics algorithms can further be
classified into three main branches: evolutionary, physics-
based, and swarm intelligence algorithms. Evolutionary al-
gorithms, inspired by natural evolution, optimize by evolving
an initial population of random solutions. The most popu-
lar algorithm in this class is the Genetic Algorithm (GA)
[4], simulating Darwinian concepts. Each new population
is formed by combining and mutating individuals from the
previous generation, with the best individuals more likely to
contribute, ensuring gradual improvement. Other evolution-
ary algorithms include Differential Evolution (DE) [5], Evo-
lutionary Programming (EP) [6], Evolution Strategy (ES) [7],
Genetic Programming (GP) [8], and Biogeography-Based
Optimizer (BBO) [9].

The second main branch of meta-heuristics is physics-
based techniques, which mimic physical rules. Popular
algorithms include Gravitational Local Search Algorithm
(GLSA) [10], Big-Bang Big-Crunch (BBBC) [11], Gravita-
tional Search Algorithm (GSA) [12], Charged System Search
(CSS) [13], Central Force Optimization (CFO) [14], Artifi-
cial Chemical Reaction Optimization Algorithm (ACROA)
[15], Black Hole (BH) algorithm [16], Ray Optimization
(RO) algorithm [17], Small-World Optimization Algorithm
(SWOA) [18], Galaxy-based Search Algorithm (GbSA) [19],
and Curved Space Optimization (CSO) [20]. These algo-
rithms use a random set of search agents that move and com-
municate according to physical rules, such as gravitational
force, ray casting, electromagnetic force, and inertia.

The third subclass of meta-heuristics is Swarm Intelligence
(SI) methods, which mimic the social behavior of groups
in nature. Similar to physics-based algorithms, these use
search agents navigating through collective intelligence. The
most popular SI technique is Particle Swarm Optimization
(PSO), proposed by Kennedy and Eberhart [3], inspired by
bird flocking behavior. PSO employs multiple particles that
move based on their own best positions and the best posi-
tion found by the swarm. Other algorithms in this class are
Ant Colony Optimization (ACO) [21], Artificial Bee Colony
(ABC) [22], Bat-inspired Algorithm (BA) [23], Marriage in
Honey Bees Optimization Algorithm (MHBO) [24], Artifi-
cial Fish-Swarm Algorithm (AFSA) [25], Termite Algorithm
(TA) [26], Wasp Swarm Algorithm (WSA) [27], Monkey
Search (MS) [28], Bee Collecting Pollen Algorithm (BCPA)
[29], Cuckoo Search (CS) [30], Dolphin Partner Optimiza-
tion (DPO) [31], Firefly Algorithm (FA) [32], Bird Mating
Optimizer (BMO) [33], Krill Herd (KH) [34], Fruit fly Op-
timization Algorithm (FOA) [35] and Grey Wolf Optimizer
[36].

Among this pool of methods, Particle Swarm Optimization
(PSO) stands out as a significant and relevant algorithm for
several reasons such as its simplicity and ease of imple-
mentation, as well as outstanding results in test cases and
real deployment. Unlike Genetic Algorithms (GA) and Ant
Colony Optimization (ACO), PSO requires fewer parameters
to adjust, resulting in a reduced computational burden [37],
[38], [39]. PSO also benefits from its internal "memory"

capabilities; it leverages previously known best positions
to enhance search efficiency, unlike GAs. Its scalability is
another key feature, as PSO can effectively handle large-
scale, high-dimensional complex optimization problems. In
terms of global optimization, PSO demonstrates the ability to
avoid multiple local minima, allowing it to navigate rugged
landscapes and identify the global minimum. Additionally,
PSO’s flexibility enables it to be easily hybridized with other
optimization techniques, further improving its results [40],
[41], [42].
As one could expect, despite the numerous benefits men-

tioned above, PSO has a few drawbacks to show as well.
One of the major issues it faces is the occasional uncontrolled
movement of some of the birds in the flock, which can lead
to poor convergence. More specifically, even if the optimal
points determined by the birds so far are confined to a small
region, the birds can gain very high velocities, resulting in an
expansion of the search space into irrelevant, large regions.
On other occasions, birds lose their velocity very quickly and
then proceed to get stuck on a point despite the optimization
needing to continue.
A natural approach to address these issues is to get under

control the reduction as well as the possible increase of the
velocity of the birds. As we show in the next section, however,
this is not that easy, and for this purpose, the commonly
used settings for the hyper-parameters of PSO are not always
practical. This is why we introduce, in Section III, a new
population-based meta-heuristic method, that introduces the
concept of energy (a combination of velocity and distance
from the optimal positions known thus far) into PSO. This al-
lows to control the convergence of the method independently
of other parameters, while still keeping all the existing PSO
features intact. While the main design inspiration is based
on the PSO algorithm, this method is better classified as a
physics based meta-heuristic, because the movement of the
particle population is governed by the physics of harmonic
oscillators – hence we name the method as Harmonic Oscila-
tor based Particle Swarm Optimization (HOPSO).
Results of the HOPSO method are described in Section

IV, showcasing its capabilities on 12 different test functions,
while the Section V concludes our findings.

II. INTRODUCTION TO PSO AND ITS PROBLEMS
The Particle SwarmOptimization (PSO) is ameta-heuristic

population based optimization method that works by simulat-
ing the social behavior of a flock of birds or a school of fish.
In these social systems, the movement of the swarm species
was observed to be a form of optimization in their search for
food.
Modeling after this swarm behavior, the PSO was devel-

oped such that each particle represents a potential solution,
and it modifies its position in the search space according to
the individual experience (a “cognitive” term) and the group
experience (a “social” term).
PSO is simple and easily implementable, and it can ensure

fast convergence to a satisfactory solution with a small num-

2 VOLUME 11, 2023

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

ber of control parameters. It works well even when the search
space is large or when the problem is highly non-linear or
multi-modal.

PSO also frequently outperforms other algorithms on prob-
lems with a smooth landscape, where the optimization pro-
cess would benefit from a more exploratory approach that
can be realized by the collective behavior of the swarm –
this is particularly important in the newly developing field of
Variational Quantum Algorithms [43], [44].

To briefly describe the working of PSO, the algorithm
begins with a population of N particles, each representing
a candidate solution in the d-dimensional search space of
the optimization problem under consideration. The positions
of these particles are randomly initialized within predefined
search space boundaries and move according to specific up-
date equations in discrete time steps, i.e. iterations. Specifi-
cally, the determination of the position in the subsequent iter-
ation is dependent on the current position with an additional
velocity-vector that drives the particle to a new, and ideally
better, position in the search space. This velocity vector for
the next iteration incorporates three crucial components: the
inertia (previous velocity), the cognitive component, and the
social component. The cognitive component represents the
element-wise difference between the personal best position
vector and its current position vector, while the social com-
ponent represents the element-wise difference between the
global (swarm) best position vector and the particle’s current
position. Each of these is then scaled by the ‘cognitive’ and
‘social’ coefficients, denoted as c1 and c2, respectively. These
coefficients represent the relative importance assigned to the
particle’s personal best position (stored in its individual mem-
ory) and the swarm’s global best positionwhen calculating the
velocity for the next iteration, thereby determining the relative
importance of the particle’s personal experience versus the
swarm’s collective knowledge in calculating the next velocity
and position.

Moreover, each of these terms is adjusted by a unique
random factor, thereby introducing stochasticity into the
search process. This movement is illustrated in figure 1. To
allow convergence of the whole system, a damping factor in
the form of a constrictor factor χwas introduced in [45]. The
update equations of this variation of the PSO algorithm are
introduced as follows with a description of its variables in
Table 1.

Velocity Update:

vj,d(i+ 1) = χ(vj,d(i) + c1r1(pj,d − xj,d(i))
+c2r2(gd − xj,d(i)))

(1)

Position Update:

xj,d(i+ 1) = xj,d(i) + vj,d(i+ 1). (2)

Balancing exploration capabilities and reasonable con-
vergence is the main challenge across all PSO variants. A
low constriction factor causes particles to stop moving too

FIGURE 1: An example of the movement of a particle in
a two-dimensional space based on the PSO algorithm in a
single iteration. An inertia term given by velocity that drives
the particle in some direction (violet arrow), a memory term
(pj) that influences the particle’s trajectory based on its best
known position (green arrow), and a global-best cooperation
term (g) that reflects the best result amongst the entire swarm
(red) constitute the particle’s projected movement (yellow
arrow). The i indicates iteration, while j indicates particle
number.

quickly, while high values (leading to low damping) cause
particles to spread into large regions far from any optima.
A specific form of the constrictor factor, χ, has therefore
been derived from the stability analysis of the PSO system
to address these concerns regarding the values of the velocity
term. Particularly, the velocity update equation can be viewed
as a second-order difference equation which occurs when
removing random variables from the PSO equation and is
then examined using roots of its characteristic equation. The
roots, λ, determine the behavior of the velocity over time and
thereby, for the system to be stable (converge), the absolute
value of the roots must be less than 1. Thus, the form of χ
must be such that the eigenvalues of the system are indeed
less than 1. Also, if the parameters c1 and c2 are too large, the
system also becomes unstable, leading to divergence of the
particle velocities. Their sum φ = c1 + c2 directly impacts
the constrictor factor χ and, consequently, the magnitude of
the velocity update. Larger values of φ causes the constrictor
factor to dampen the velocities more significantly to prevent
runaway velocities that lead to divergence, therefore allowing
a better andmore controlled convergence behavior. Lastly, the
presence of the square root and absolute value in χ ensures
they reduce gradually as they approach an optimal solution,
preventing overshooting or oscillatory behavior. From these
observations in their analysis, Clerc and Kennedy proposed
the mathematically designed form of χ to be

χ =
2∣∣∣2− φ−
√
φ2 − 4φ

∣∣∣ (3)

φ = c1 + c2. (4)

VOLUME 11, 2023 3

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Empirical studies suggest that commonly used parameters
to ensure convergence are c1 = c2 = 2.05 [46], with a
constriction factor χ = 0.7298, derived from the analysis of
PSO without randomness.

TABLE 1: Explanation of PSO parameters

Parameter Description
vj,d(i) Velocity of particle j in dimension d at

iteration i
xj,d(i) Position of particle j in dimension d at

iteration i
χ Constrictor factor (damping)
c1 Cognitive coefficient, attraction to-

wards the particle’s best known position
c2 Social coefficient, attraction towards

the swarm’s best known position
r1, r2 Random values uniformly distributed in

the range [0, 1]
pj,d d-th dimension of the best known posi-

tion of particle j
gd d-th dimension of the global best

known position

Let us now analyse in detail the potential for velocity explo-
sions in PSO, a phenomenon described by Kennedy and Eber-
hart [45]. This occurs when particle velocities significantly
exceed the characteristic scale of the search space during the
optimization process, leading to swarm divergence, as these
high-velocity particles continue to traverse the parameter
space rapidly and their ability to effectively locate optima of
the cost function becomes severely compromised. This be-
havior thereby undermines the balance between exploration
and exploitation that is crucial for the PSO’s effectiveness.

In order to understand why these velocity explosions occur,
let us briefly analyse the time evolution of a single bird in our
swarm. For simplicity, let us consider only one dimension,
as each of the dimensions are behaving independently until a
new optimum is identified. In this case, the position update
equation (2) and velocity update equation (1) can be repre-
sented with a matrix M acting on the vector with position
and velocity coordinates which thereby provides a compact
way to describe the coupled dynamics of both velocity and
position written as presented in (5)

P⃗t+1 = MP⃗t , P⃗t = (vt , yt), (5)

where
yt =

φ1g+ φ2p
φ1 + φ2

− xt , (6)

with φ1 = r1c1 and φ2 = c2r2 and the dynamical matrix M
governing the time evolution defined as

M =

(
χ χφ
−χ 1− χφ

)
, (7)

where φ = φ1 + φ2.
Notice that equation (5) only represents a single iteration

step but since the random numbers r1 and r2 are changing
in each iteration, to represent the state of the particle after
several iterations we need to accumulate the effects of all
previous iterations, therefore the state vector P⃗t of a bird that
was initially at position x0 with velocity v0 can be described
as a product of transformations

P⃗t =
t∏

i=0

MiP⃗0, P⃗0 = (v0, y0). (8)

If no new local or global optimum is found, it is expected
that our bird will gradually converge and its velocity will
decay to zero. As analysed in [45], when one keeps the same
value of χ and φ throughout the entire simulation (removing
the stochastic nature of the method), the sufficient condition
for convergence is

max(|λ1|, |λ2|) < 1, (9)

where λ1 and λ2 are the eigenvalues of M given by

λ1,2 =
1

2

(
1+(1−φ)χ±

√
((φ− 1)χ− 1)2 − 4χ

)
, (10)

as both the eigenvectors are multiplied by λt1 and λt2 which
both converge to 0.
This is no longer the case when one includes the random-

ness into PSO. In this case the behavior is governed by a
product of t different dynamical matrices in (8). Here, despite
the fact that each individual matrix M has the magnitude of
both eigenvalues below 1, it is in general not the case for their
product, i.e. subsequent multiplication of matrices, with each
of their eigenvalue being smaller than one, to also form a
matrix with a very small eigenvalue, therefore having large
eigenvalues will lead to explosions in velocities.

To analyse the product of different matrices, one has rather
to look into the singular values of the dynamical matrix M
given by

σ2
1,2 =

1

2

(
2χ2
(
(c1r1+ c2r2)2+1

)
− 2(c1r1+ c2r2)χ+1

±
√
(2χ2

(
(c1r1 + c2r2))2 + 1)− 2(c1r1 + c2r2)χ+ 1)2 − 4χ2

)
.

(11)

Singular values express the limits of maximum possible pro-
longation or contraction of a vector that is multiplied by a
given matrix. To have the length of the vector under control,
one optimally needs to have both singular values being sim-
ilar, and for smooth convergence it must be smaller than one
but close to one.
Using a simplification of c1 = c2 = 2.05 = c along with

definition of r = r1 + r2 as the sum of random numbers used
in the specific step, expression (12) becomes

σ2
1,2 =

1

2

(
2χ2
(
(cr)2 + 1

)
− 2crχ+ 1

±
√(

2χ2(cr)2 + 1)− 2crχ+ 1
)2 − 4χ2

)
. (12)

Singular values for matrix (7) are shown in Fig. 2 – note that

4 VOLUME 11, 2023

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

the sum of random numbers runs from 0 to 2.

FIGURE 2: Singular values of dynamical matrix M for c1 =
c2 = 2.05, in which case χ = 0.729. One can see that in the
region of small sum of random numbers both singular values
are close to one and their average is below one, so one can
expect some kind of reasonably small convergence. However,
for large sum of random numbers this is not the case – one
singular values almost diminishes and the other one reaches
almost the value of 4, thus one can, depending on the starting
position and exact combination of random numbers obtain
both very fast dying out, as well as velocity and position
explosions. Let us note, however, that using two independent
random numbers r1 and r2 makes the probability distribution
of its sum higher, when the sum of r1 and r2 is around 1,
making the explosions less probable.

Results of this theoretical analysis have been confirmed by
having studied the behavior of the method in specific real-
world cases. First of all, the explosions have been seen as
resulting from a specific series of random numbers, where
large and small numbers have regularly followed after each
other. This is because the specific form of M matrix causes
rotation in the governing vector (large velocity in one step
induces large distance in the next one), leading to the applica-
tion of the second singular value in the next step. If, however, a
large randomnumber is appliedwhen the larger singular value
is active, along with a small random number combined with
smaller singular value, the resulting behavior is divergent.

This understanding is also confirmed by the observed fact,
that when one decided to use only a single random number
(i.e. defining r1 = r2), the velocity explosions happened
regularly, while other birds died very quickly. This is due to
the fact that the extreme singular values were achieved with
a much higher probability compared to when there were two
independent random numbers.

It is clear that achieving a smooth and controlled conver-
gence of the method with its existing governing equation, a
very detailed control of randomness applied would be neces-
sary. This would, however, compromise the stochastic nature

of the method – the more restrictions that are applied, the
higher is the probability of not reaching the global maximum.
Thus, we suggest to re-formulate the PSO idea in a more
physical framework, introducing the concept of energy, its
conservation and loss via damping, together with possible
energy boosts connected with finding a new global or local
optimum.
Achieving smooth and controlled convergence with the

current governing equations would require precise manage-
ment of the randomness applied. However, this would un-
dermine the stochastic nature of the method—the more con-
straints imposed, the higher the likelihood of failing to reach
the global maximum. Therefore, we propose reformulating
the PSO approach within a more physical framework, in-
troducing concepts such as energy, conservation, and loss
through damping, along with potential energy boosts asso-
ciated with finding new global or local optima.

III. HARMONIC OSCILLATOR BASED PARTICLE SWARM
OPTIMIZATION – HOPSO
The general framework of energy consists of two basic types –
kinetic energy, defined by the movement of specific particles,
and potential energy, defined in most cases by the position of
particles and expressing the potential to gain (or loose) kinetic
energy by changing its position. Potential energy can only be
associated by conservative forces, such as gravity or electro-
magnetic forces, whereas friction forces are typical examples
of non-conservative forces that lead to loss of energy (or, more
precisely, to dissipation into heat).
While there exist optimization approaches that are based

on gravity [12], [47], which is mathematically very similar
to the the model of charges, we consider it as not a very
promising approach. Firstly, the energy diverges to negative
infinity while reaching the center of gravity, which leads,
again, to explosions of velocities. Secondly, for long distances
the attractive force only increases in aminor way, allowing the
particles to fly very far from the attractor.
For such reasons, wewere inspired to use spring forces, e.g.

forces that are linear with the distance between the attractor
and the position of the particle, and can be associated with an
ideal spring. This concept is optimal as for small distances the
potential energy converges to 0 while for large distances the
energy grows quadratically, essentially bounding the particle
to a well defined region.
One challenge is that when a single spring is used across

multiple dimensions, the total energy depends in a complex
non-trivial way on the position in all dimensions. To simplify
the process, we propose a model in which an independent
virtual spring is assigned to each dimension, attracting the
particle within that dimension only. This approach maintains
the principle of energy conservation while enabling faster and
simpler calculations. It also allows for independent adjust-
ment of constraints in different dimensions, as the energy is
now decoupled for each parameter.
Now the movement of particles, if modelled in continuous

time, would reflect swinging on a spring with a center defined

VOLUME 11, 2023 5

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

by an attractor (a suitable combination of social and cognitive
term) independently in each single dimension. The period of
these oscillations is defined by a combination of a virtual
mass of that particle and the stiffness of the spring – each of
which can be chosen arbitrarily. This movement has a simple
analytical solution – harmonic motion.

In the optimization process, there is no need to model the
entire motion. Instead, snapshots are taken at different mo-
ments during the harmonic oscillations. Randomness starts
to influence the process in HOPSO at this stage. Rather than
altering the potential (by adjusting the constants that link po-
sition and velocity changes) which would cause unpredictable
energy fluctuations, we instead allow the particles to oscillate
harmonically and observe them as snapshots at different time
intervals.

In contrast to the original PSO where the damping in-
fluences multiple aspects including the social and cognitive
terms through the constrictor factor, here the damping con-
stant solely governs energy dissipation which directly relates
to the searching ability of the particle. In the results section
we will show how to use this parameter, indicating that not
only does this parameter offer more tunability in governing
convergence via this physically-inspired model, but also that
this damping parameter is an easily controlled independent
parameter (i.e. can be classified as a "free parameter"). This
flexibility offers a significant advantage for optimization
problems, and is one of the crucial advantages of the HOPSO
algorithm over not only the standard PSO method, but other
non-gradient methods as well, presented in our results sec-
tion.

More formally, each particle’s position in each dimension
is defined as the solution of a damped harmonic oscillator.
The solution is given by the following equation:

x(t) = A0e−λt cos (ωt + θ) + x0, (13)

where, x(t), A0, λ, ω and θ represent the position of the
particle at time t , initial amplitude, damping factor, angular
frequency and initial phase of the oscillation, respectively,
whereas the x0 is the position of the attractor in that direction.
The velocity of the particle at any given time t can be

obtained by differentiating (13)

v(t) = −ω(A0e−λt sin (ωt + θ))− λ(x(t)). (14)

The time of measurement is chosen randomly within the
interval [0,tul] for each particle and in each dimension, where
tul is the upper limit of the time sampling range and typically
is chosen as the period of oscillation. The iterative change in
parameter t is defined as (15)

ti+1 = ti + rand [0, tul], (15)

where the parameter i represents the index of iteration.
The optimization begins by initializing the particles at

random positions along with random velocities in the param-
eter landscape. The initial positions are noted as the initial
personal-best positions. The global-best position is noted as

the best position out of all the personal-best positions of all the
particles. This global best position corresponds to the lowest
value of the cost function within the swarm.
Each particle then oscillates about an attractor indepen-

dently in each dimension. This attractor can be calculated as

aj,d =
c1pj,d + c2gd
c1 + c2

, (16)

where a, p, g represent, respectively, the position of the at-
tractor, personal best position of the particle and the global
best position for the jth particle in d th dimension. The c1
and c2 terms represent the weights of attraction towards the
personal-best and global-best positions, respectively. Typi-
cally, the values c1 and c2 are set equal, so the attractor lies
equidistant between the personal best position and the global
best position.
We solve (13) and (14) to obtain the initial amplitudes A0

for each particle and in each dimension by choosing the initial
time as t = 0:

A0 =

√
(x(0)− a)2 + (v(0) + λ(x(0)− a))2

ω2
. (17)

Once the initial oscillation amplitude A0 is determined, the
initial phase of the oscillation θ can be calculated as

θ = arccos
x(0)− aj,d

A0
. (18)

We then let the particles oscillate in time, while this initial
amplitude of oscillation A0 decays as A0e−λt . For every
iteration, we stop the clock at a random time, calculate the
values of the cost function for all the particle positions.
If there is a change in pj, then the attractor for the jth particle

is recalculated using (16) while the amplitudes and phase
values are recalculated by resetting the time for that particular
particle as zero using (17), (20) & (21). If instead there is a
change in g, then all the attractors are changed accordingly
using (16). The amplitudes and phases are again recalculated
using (17), (20) & (21) by resetting the time as zero for all
particles.
This procedure, however, might in some cases lead to a

significant loss of energy for the particle that found the new
best position. This can be seen in an example when the best
position is found at the boundary of the oscillation region
where the velocity of the particle is close to zero. If that
position is the new attractor, the potential energy of the string
will be zero as well, as it freezes the particle until a new
global best position is found. This is naturally not a desirable
situation, as that particle is "punished" for being successful.
To deal with this issue, we postulate a condition that the newly
calculated amplitude is never smaller than the previous one –
more generally, finding a new best position can never lead to
decrease of the energy in the system.
Given enough time without finding a new global best, there

is a possibility that the amplitude of particles whose personal
best is far away from the global best becomes so small that
the particle fails to effectively search the space between them,

6 VOLUME 11, 2023

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

causing it to virtually become stuck in the middle, which
might be a very unfavorable region. Numerical simulations
did show that this basically leads to an effective loss of this
kind of particle, as it will almost never contribute with new
results. A naive approach to solve this problem is by reducing
the damping parameter λ, however the drawbacks of this is
that this may also reduce the convergence in the desired cases.

We therefore included a different approach to resolve this
issue, namely, to limit the amplitude from below to some
threshold amplitude Ath and prevent it from further damping.
Naturally, this treshold amplitute should be in the order of
the distance between the global and personal best positions to
allow for searching in a region encompassing both of them.
Thus we define

Ath =
|pj,d − gd |

2
∗ m, (19)

where m is a free parameter and define

(A0)i+1 = max((A)i, (A0)i+1,Ath). (20)

A pictorial representation of (20) is shown in the Fig. 3.
A pseudo-code formalizing all the previously described

procedures is shown in Algorithm 1.

FIGURE 3: HOPSO Visualization: In one-dimension, the
particle j oscillates about the attractor aj which is set half-way
between its personal best (pj) and the swarm’s global best (g)
based on the weighted average equation (16). The damping
is switched off when the amplitude decreases, in the depicted
case, it is twice the distance between the attractor and one of
the best positions.

IV. RESULTS
We demonstrate now the performance of our algorithm on on
a large set of commonly used test functions for multi-variable
many-minima test functions. These functions are listed in Tab.
2.

These particular functions were chosen for their different
and diverse properties, making them ideal for testing opti-
mization algorithms [48] and are a common, standard choice.
The Ackley and Rastrigin functions have many local minima.
Similarly, the Levy function’s complex landscape challenges
algorithms to avoid local minima. The Sphere function is
a simple, unimodal, bowl-shaped function, while the Beale

Algorithm 1: Harmonic Oscillator based Particle
Swarm Optimization (HOPSO)
Input: Problem dimensions, Objective function,

Algorithm parameters
Output: Candidate Optimal solution
Set constants c1, c2, λ, m for attraction weights and
damping and minimal amplitude ration;

Initialize particles with random positions xi,d and
velocities vi,d ;

Set initial personal best positions pi by starting
positions for each particle;

Choose initial global best position g;
Calculate position of attractors: ai =

c1pi+c2g
c1+c2

;
Calculate initial amplitude:

A0 =

√
(x(0)− a)2 +

(
v(0)+λ(x(0)−a)

ω

)2
;

Calculate initial phase: θ = arccos
(
x(0)−a
A0

)
;

while iteration < max_iterations do
foreach particle do

foreach dimension do
A = max(A0e−λt , |pi−g|

2 · m);
x(t) = A0e−λt cos(ωt + θ) + x0;
v(t) = −ω(A0e−λt sin(ωt + θ))− λx(t);

foreach particle do
Calculate Cost function from positions;
if Cost_function(xi,d(t)) < Cost_function(pi)
then

Update pi, best value, time, attractors,
amplitude, phase;

if personal best value < global best energy then
Update global best value and g;
foreach particle and dimension do

Reset time, recalculate attractors,
amplitude, phase;

iteration← iteration + 1;

function is multimodal with sharp peaks at the corners of the
input domain. The Goldstein-Price function is highly multi-
modal and complex, while the Schwefel function, known for
its large search space, presents numerous traps. The Rosen-
brock function’s narrow, curved valley tests precision, while
the Drop-Wave function features steep drops and peaks. The
Cross-in-Tray function and the Michalewicz function, with
their deep valleys and sharp peaks, also make it extremely
challenging for optimization algorithms to find the optimum
and are therefore suitable choices as well. Each function was
chosen to uniquely test different aspects of the optimization
algorithm that we present in this text.

The performance of HOPSO will be compared to that of
the standard PSO, COBYLA [49], and Differential Evolution
(DE) [50] optimization methods.

VOLUME 11, 2023 7

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 2: Commonly used test functions for optimization methods

Name Functional Form Modality Initial range Fmin Dimension

Ackley

−a exp

−b
√√√√ 1

d

d∑
i=1

x2i

− exp

(
1

d

d∑
i=1

cos(cxi)

)
+ a+ exp(1)

Multimodal [-32.76,32.76] 0 10

Beale
(1.5− x1 + x1x2)2 + (2.25− x1 + x1x22)

+(2.625− x1 + x1x32)
Multimodal [-5,5] 0 2

Cross-in-Tray
−0.0001[| sin(x1) sin(x2)

exp(|100−
√
x21 + x22
π

|)|+ 1]0.1
Multimodal [-10,10] -2.06261 2

Drop-Wave − 1+cos(12
√
x21+x

2
2)

0.5(x21+x
2
2)+2

Multimodal [-5.12,5.12] -1 2

Goldstein-Price

[1 + (x1 + x2 + 1)2(19− 14x1 + 3x21 − 14x2
+6x1x2 + 3x22)] · [30 + (2x1 − 3x2)2(18

−32x1 + 12x21 + 48x2 − 36x1x2 + 27x22)]

Multimodal [-2,2] 3 2

Griewank 1
4000

∑d
i=1 x

2
i −

∏d
i=1 cos

(
xi√
i

)
+ 1 Multimodal [-600,600] 0 10

Levy
sin2(πw1) +

d−1∑
i=1

(wi − 1)2[1 + 10 sin2(πwi + 1)]

+(wd − 1)2[1 + sin2(2πwd)]

Multimodal [-10,10] 0 10

Michalewicz −
∑d

i=1 sin(xi)
[
sin
(
ix2i
π

)]2m
Multimodal [0,π] -4.687 5

Rastrigin 10d +
∑d

i=1[x
2
i − 10 cos(2πxi)] Multimodal [-5.12,5.12] 0 10

Rosenbrock
∑d−1

i=1 [100(xi+1 − x2i)2 + (xi − 1)2] Unimodal [-5,10] 0 10

Schwefel
∑d

i=1[−xi sin(
√
|xi|)] Multimodal [-500,500] 0 10

Sphere
∑d

i=1 x
2
i Unimodal [-10,10] 0 5

8 VOLUME 11, 2023

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Constrained optimization by linear approximation (COBYLA)
is a gradient-free simplex based optimization method. It was
first introduced by Michael J.D. Powell in 1994 [49]. To de-
scribe the algorithm briefly, it operates by creating a simplex,
a polytope of n + 1 vertices for an n-dimensional space,
and using the values of the objective function at the vertices
of this simplex it approximates the objective function along
with linear contraints, solving linear programming problems
within a trust region. The simplex and the trust region are
adjusted iteratively until the convergence is obtained. For
more details refer to Powell’s original paper [49].

Differential Evolution (DE) is an another meta-heuristic
algorithm like PSO. DE is an optimization technique that
begins with a set of possible solutions and gradually refines
them. It generates new solutions by mixing existing ones
and keeps the better options in each iteration. This repeated
process continues until it finds the best solution. DE was first
given by Rainer Storn and Kenneth Price in 1997 [50]. To
briefly describe DE, a population of candidate solutions is
initialized randomly. For each candidate, a mutant vector is
generated by adding the weighted difference between two
randomly selected population vectors to a third vector. This
mutant vector is then recombined with the target vector, and a
selection process determines whether the new vector replaces
the target vector based on a fitness evaluation. This process
is repeated iteratively until a stopping criterion is met. It was
shown recently [51] that DE, although not being as popular
as PSO, outperforms PSO in many cases, hence it is a natural
choice for an optimizer for comparison.

To compare optimization algorithms, it is necessary to in-
troduce a total ‘‘budget" of function evaluations. This budget
represents the number of times the algorithm is permitted to
query the objective function to assess its performance. Each
optimization method utilizes this budget in various differ-
ent ways, depending on its internal parameters and search
strategies. In principle, the samemethod can achieve different
results for different values of tuning parameters, so we use
the commonly-used ‘‘standard settings" which result in a
typically-good performance for each optimization method.
By setting a specific budget for each function—typically
10,000 or 1,000 function evaluations—it becomes possible
to relate and adjust the set of tunable parameters of a given
optimization method to this set budget, and to allow for a fair
and reasonable comparison among all optimization methods.

Specifically, here in this study Scipy’s optimizationmodule
[52] was used to implement COBYLA and DE. The bud-
get for DE is calculated as the product of population size
(equivalent to number of particles in PSO) and the maximum
number of generations (i.e. iterations). The default population
size for DE is taken as the dimension of the cost function.
For COBYLA, the number of function evaluations equates
to the maxiter parameter (i.e. maximum iterations allowed).
Meanwhile PSO was run via our own implementation but
using the standard parameter settings found in the literature
mentioned earlier. It is important to note that since COBYLA
andDE are Scipy optimizers, they run up to themax-iterations

which is set by their own convergence criteria. However, the
tolerance for the convergence was changed so that all of the
budget is utilised efficiently.
In PSO, the product of the number of particles and the

number of iterations define the function evaluation count. The
PSO’s aforementioned parameter-values are widely accepted
based on empirical studies and provide reasonable results for
many types of problems. However, due to the narrow range
of acceptable values, it can be particularly challenging to
adjust the PSO to fit a specific problem’s landscape without
significantly impacting its performance. As a result, PSO
is less tunable and it’s performance can sometimes be less
flexible compared to other optimizers that allow for a broader
range of parameter tuning. As such, we utilize its standard
settings, which are (as mentioned previously) χ = 0.729 and
c1, c2 being each 2.05.
As in the PSO, the number of particles and iterations

directly defines the budget in HOPSO. The HOPSO settings
are designed to mirror the equivalent parameters in PSO,
ensuring a fair playing field between the optimizers. Namely,
the HOPSO settings are c1 = c2 = ω = 1, tul = 2π
and m = 2.05. The randomness inherent in the PSO is
similarly incorporated into HOPSO via time sampling, albeit
HOPSO employs only a single random variable as opposed
to PSO’s use of two random variables. But in both cases,
the randomness is applied independently to each particle and
each dimension.
The crucial difference which offers the superior advantage

of HOPSO above PSO is the tunability of the damping param-
eter λ. While the PSO has a damping factor as well, HOPSO’s
λ term, as mentioned earlier, serves as an easily controlled
free parameter, influential on the energy control of the system
and therefore its convergence as well. While this term acts
like a free parameter, provided here is a general guideline
(or starting point) for controlling HOPSO’s damping, which
will provide reasonable initial results but may be adjusted as
desired by the user. But how does the user select a reasonable
value? We intuitively reason that if there is a higher budget
of function evaluations, there is a less need for damping in
the system – since less damping allows for a broader search,
and vice versa. Since we have established a finite budget of
function evaluations to compare the optimization methods
for each function, we provide a relationship for setting the
lambda term based on the budget. It relates as follows

λ ≡ s
(
B
N

)−1

(21)

where B is the number of function evaluations (i.e. budget),
N is the total number of particles, and s is a scaling factor,
whichwe set to 10. It is possible that a better value ofλmay be
found than that presented in (21), a value that will be specially
tailored to the cost-function’s landscape and its properties.
Nonetheless, we figure that this balance between the freedom
for the user in the selection of the λ-value while providing a
general "starting selection" that demonstrates strong results

VOLUME 11, 2023 9

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

initially, is a strong reasoning for the optimal efficiency of
this algorithm. The initially-strong results is clear from the
results that we present in the next section, where we compare
HOPSO to the other optimization methods having followed
the criteria of equation (21). Further empirical and mathemat-
ical analysis is needed to investigate the dependencies of λ
and its relation to the search space.

The results that are presented here in Figs. 4,5,6 use a fixed
λ that is obtained from the specific function’s chosen budget
(refer to Table 3), 10 particles, and a scaling factor s set to
equal 10 for all the functions. However, for the functions in
which the HOPSO performed worse compared to its fellow
optimizers, an analysis was done in varying lambda (via the s
scaling factor). The results are presented in , from which one
can conclude that fine-tuning this scaling factor may further
improve the strong results presented in the other figures with
s set to equal 10 .

The results presented compare the performance of HOPSO,
PSO, COBYLA, and DE on a diverse set of test functions.
These functions, selected for their varying properties, chal-
lenge the optimizers across different optimization landscapes
and features. HOPSO consistently outperforms the other
methods in complex multimodal functions, such as Cross-in-
Tray and Goldstein-Price, demonstrating strong convergence
to minima. For functions with many local minima, such
as Ackley, HOPSO shows superior performance compared
to PSO and DE. However, COBYLA and DE prove more
competitive in the Rosenbrock function – a valley shaped
unimodal function.

As can be inferred from Tab. 3, in the case of Cross in tray
and Sphere, three or more optimizers perform similarly. In the
case of the Sphere function, the mean of the all optimizers
reaches below 10E-13, which we consider to be zero. In six
cases, HOPSO outperforms the three other optimizers. In the
rest of the four cases, DE performs the best. All these results
of HOPSO are obtained without fine-tuning of the hyper pa-
rameters similarly as was the case with the other optimizers. It
can be seen that sometimes, fine-tuning the hyper parameters
of HOPSO can improve the results. Out of the four cases
where DE performs the best, having fine-tuned the scaling
parameter, s, of HOPSO resulted in it outperforming DE on
the functions Michalewicz and Rastrigin. This is shown in the
Fig. 7.

In virtually all the cases, HOPSO is at least as good as PSO.
Thus, in any case when one may consider using PSO for their
optimization purposes, HOPSOmerits consideration over the
PSO method – as HOPSO is a more powerful optimization
tool.

V. CONCLUSION
In the paper we present a new algorithm – coined as
‘HOPSO’– based on the popular population-based PSO op-
timizer – incorporating physics-inspired principles. It offers
a strong advantage against the standard PSO in the fact that
it prevents velocity explosions and has better tuning features,

i.e. it offers more individual control over the iterative process
without the risk of stagnation or divergence.
We have shown the power of the new procedure through its

application onto a set of standard benchmark test optimiza-
tion functions and compared to other non-gradient methods
including COBYLA and DE. HOPSO outperformed the stan-
dard PSO and COBYLA in all cases, thus being able to com-
pletely replace PSO. In most cases, it has also outperformed
the DE method, demonstrating HOPSO as a significantly
competitive, powerful, and efficient optimization algorithm.

ACKNOWLEDGMENT
The authors would like to thankMartin Friak and his team for
valuable discussions.

REFERENCES
[1] D.H. Wolpert and W.G. Macready. No free lunch theorems for optimiza-

tion. IEEE Transactions on Evolutionary Computation, 1(1):67–82, April
1997.

[2] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, 1983.

[3] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings
of ICNN’95 - International Conference on Neural Networks, volume 4,
pages 1942–1948 vol.4, November 1995.

[4] John H. Holland. Genetic Algorithms. Scientific American, 267(1):66–73,
1992.

[5] Rainer Storn and Kenneth Price. Differential Evolution – A Simple
and Efficient Heuristic for global Optimization over Continuous Spaces.
Journal of Global Optimization, 11(4):341–359, December 1997.

[6] Xin Yao, Yong Liu, and Guangming Lin. Evolutionary programming made
faster. IEEE Transactions on Evolutionary Computation, 3(2):82–102, July
1999.

[7] Nikolaus Hansen, Sibylle D. Müller, and Petros Koumoutsakos. Reducing
the time complexity of the derandomized evolution strategy with covari-
ance matrix adaptation (CMA-ES). Evol. Comput., 11(1):1–18, March
2003.

[8] John R. Koza. Genetic programming as a means for programming com-
puters by natural selection. Statistics and Computing, 4(2):87–112, June
1994.

[9] Haiping Ma, Dan Simon, Patrick Siarry, Zhile Yang, and Minrui Fei.
Biogeography-Based Optimization: A 10-Year Review. IEEE Transactions
on Emerging Topics in Computational Intelligence, 1(5):391–407, October
2017.

[10] Barry Webster and Philip J. Bernhard. A local search optimization algo-
rithm based on natural principles of gravitation. In Hamid R. Arabnia,
editor, Proceedings of the International Conference on Information and
Knowledge Engineering. IKE’03, June 23 - 26, 2003, Las Vegas, Nevada,
USA, Volume 1, pages 255–261. CSREA Press, 2003.

[11] Osman K. Erol and Ibrahim Eksin. A new optimization method: Big
bang–big crunch. Advances in Engineering Software, 37(2):106–111,
2006.

[12] Esmat Rashedi, Hossein Nezamabadi-pour, and Saeid Saryazdi. Gsa: A
gravitational search algorithm. Information Sciences, 179(13):2232–2248,
2009. Special Section on High Order Fuzzy Sets.

[13] Ali Kaveh and Siamak Talatahari. A novel heuristic optimization method:
charged system search. Acta mechanica, 213(3):267–289, 2010.

[14] Richard Formato. Central force optimization: a new metaheuristic with
applications in applied electromagnetics. Progress in electromagnetics
research, 77:425–491, 2007.

[15] Bilal Alatas. Acroa: Artificial chemical reaction optimization algorithm
for global optimization. Expert Systems with Applications, 38(10):13170–
13180, 2011.

[16] Abdolreza Hatamlou. Black hole: A new heuristic optimization approach
for data clustering. Information Sciences, 222:175–184, 2013. Including
Special Section on New Trends in Ambient Intelligence and Bio-inspired
Systems.

[17] A. Kaveh and M. Khayatazad. A new meta-heuristic method: Ray opti-
mization. Computers & Structures, 112-113:283–294, 2012.

10 VOLUME 11, 2023

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Function Function eval-
uations

Fmin Mean

HOPSO PSO COBYLA DE

Ackely 10000 0 0.0115 1.3824 19.410 5.6180

Beale 1000 0 0.0363 0.0635 1.0368 0.1174

Cross in tray 10000 -2.0626 -2.0626 -2.0626 -1.7594 -2.0626

Drop wave 10000 -1 -0.9841 -0.9790 -0.3781 -0.9460

Goldstein-Price 1000 3 4.080 5.4463 70.427 6.240

Griewank 10000 0 0.1033 0.1471 21.920 1.0461

Levy 10000 0 0.1749 2.0717 20.081 1.5805

Michealwicz 10000 -4.687 -4.4980 -4.0539 -3.0879 -4.5187

Rastrigin 10000 0 11.980 14.298 55.091 11.770

Rosenbrock 10000 0 5.3834 7776.2 12.612 1.1960

Schwefel 10000 0 1002.1 1083 1621.5 686.57

Sphere 1000 0 0 0 0 0

TABLE 3: Results of the optimization using different optimizers on different test functions.

[18] Haifeng Du, Xiaodong Wu, and Jian Zhuang. Small-world optimization
algorithm for function optimization. In Licheng Jiao, Lipo Wang, Xinbo
Gao, Jing Liu, and Feng Wu, editors, Advances in Natural Computation,
pages 264–273, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[19] Hamed Shah-Hosseini. Principal components analysis by the galaxy-
based search algorithm: a novel metaheuristic for continuous optimisation.
International Journal of Computational Science and Engineering, 6(1-
2):132–140, 2011.

[20] Fereydoun Farrahi Moghaddam, Reza Farrahi Moghaddam, and Mohamed
Cheriet. Curved space optimization: a random search based on general
relativity theory. arXiv preprint arXiv:1208.2214, 2012.

[21] Marco Dorigo and Thomas Stützle. Ant Colony Optimization. MIT Press,
2004.

[22] Dervis Karaboga and Bahriye Basturk. A powerful and efficient algorithm
for numerical function optimization: artificial bee colony (ABC) algorithm.
Journal of Global Optimization, 39(3):459–471, November 2007.

[23] Xin-She Yang. A NewMetaheuristic Bat-Inspired Algorithm, pages 65–74.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[24] H.A. Abbass. Mbo: marriage in honey bees optimization-a haplometrosis
polygynous swarming approach. In Proceedings of the 2001 Congress on
Evolutionary Computation (IEEE Cat. No.01TH8546), volume 1, pages
207–214 vol. 1, 2001.

[25] XL Li. A new intelligent optimization-artificial fish swarm algorithm.
Doctor thesis, Zhejiang University of Zhejiang, China, 27, 2003.

[26] Roth Martin and Wicker Stephen. Termite: A swarm intelligent routing
algorithm for mobilewireless Ad-Hoc networks, pages 155–184. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2006.

[27] Pedro C. Pinto, Thomas A. Runkler, and João M. C. Sousa. Wasp swarm
algorithm for dynamic max-sat problems. In Bartlomiej Beliczynski,
Andrzej Dzielinski, Marcin Iwanowski, and Bernardete Ribeiro, editors,
Adaptive and Natural Computing Algorithms, pages 350–357, Berlin, Hei-
delberg, 2007. Springer Berlin Heidelberg.

[28] Antonio Mucherino and Onur Seref. Monkey search: a novel metaheuristic
search for global optimization. AIP Conference Proceedings, 953(1):162–
173, 11 2007.

[29] Xueyan Lu and Yongquan Zhou. A novel global convergence algorithm:
Bee collecting pollen algorithm. In De-Shuang Huang, Donald C.Wunsch,
Daniel S. Levine, and Kang-Hyun Jo, editors, Advanced Intelligent Com-
puting Theories and Applications. With Aspects of Artificial Intelligence,
pages 518–525, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[30] Xin-She Yang and Suash Deb. Cuckoo search via lévy flights. In 2009
World Congress on Nature & Biologically Inspired Computing (NaBIC),
pages 210–214, 2009.

[31] Yang Shiqin, Jiang Jianjun, and Yan Guangxing. A dolphin partner opti-
mization. In 2009 WRI Global Congress on Intelligent Systems, volume 1,
pages 124–128, 2009.

[32] Xin-She Yang. Firefly algorithm, stochastic test functions and design
optimisation. International journal of bio-inspired computation, 2(2):78–
84, 2010.

[33] Alireza Askarzadeh and Alireza Rezazadeh. A new heuristic optimization
algorithm for modeling of proton exchange membrane fuel cell: bird
mating optimizer. International Journal of Energy Research, 37(10):1196–
1204, 2013.

[34] Amir Hossein Gandomi and Amir Hossein Alavi. Krill herd: A new bio-
inspired optimization algorithm. Communications in Nonlinear Science
and Numerical Simulation, 17(12):4831–4845, 2012.

[35] Wen-Tsao Pan. A new fruit fly optimization algorithm: Taking the financial
distress model as an example. Knowledge-Based Systems, 26:69–74, 2012.

[36] Seyedali Mirjalili, Seyed Mohammad Mirjalili, and Andrew Lewis. Grey
wolf optimizer. Advances in engineering software, 69:46–61, 2014.

[37] S.N. Sivanandam and S.N. Deepa. Introduction to Particle Swarm Opti-
mization and Ant Colony Optimization, pages 403–424. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008.

[38] Georgios Papazoglou and Pandelis Biskas. Review and comparison of
genetic algorithm and particle swarm optimization in the optimal power
flow problem. Energies, 16(3), 2023.

[39] Janmenjoy Nayak, H Swapnarekha, Bighnaraj Naik, Gaurav Dhiman, and
S Vimal. 25 years of particle swarm optimization: Flourishing voyage
of two decades. Archives of Computational Methods in Engineering,
30(3):1663–1725, 2023.

[40] Feng Wang, Heng Zhang, Kangshun Li, Zhiyi Lin, Jun Yang, and Xiao-
Liang Shen. A hybrid particle swarm optimization algorithm using adap-
tive learning strategy. Information Sciences, 436-437:162–177, 2018.

[41] Radha Thangaraj, Millie Pant, Ajith Abraham, and Pascal Bouvry. Particle
swarm optimization: Hybridization perspectives and experimental illustra-
tions. Applied Mathematics and Computation, 217(12):5208–5226, 2011.

[42] Jinwei Qiao, Guangyuan Wang, Zhi Yang, Xiaochuan Luo, Jun Chen, Kan
Li, and Pengbo Liu. A hybrid particle swarm optimization algorithm for
solving engineering problem. Scientific Reports, 14(1):8357, 2024.

VOLUME 11, 2023 11

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[43] Ivana Miháliková, Matej Pivoluska, Martin Plesch, Martin Friák, Daniel
Nagaj, and Mojmír Šob. The cost of improving the precision of the
variational quantum eigensolver for quantum chemistry. Nanomaterials,
12(2), 2022.

[44] Xavier Bonet-Monroig, Hao Wang, Diederick Vermetten, Bruno Senjean,
Charles Moussa, Thomas Bäck, Vedran Dunjko, and Thomas E. O’Brien.
Performance comparison of optimization methods on variational quantum
algorithms. Phys. Rev. A, 107:032407, Mar 2023.

[45] James Kennedy Maurice Clerc. The particle swarm - explosion, stability
and convergence in a multidimensional complex space. Transactions on
Evolutionary Computation, pages 58–73, 2002.

[46] Daniel Bratton and James Kennedy. Defining a standard for particle swarm
optimization. In 2007 IEEE Swarm Intelligence Symposium, pages 120–
127, 2007.

[47] Talha Ali Khan and Sai Ho Ling. A novel hybrid gravitational search par-
ticle swarm optimization algorithm. Engineering Applications of Artificial
Intelligence, 102:104263, 2021.

[48] S. Surjanovic and D. Bingham. Virtual library of simulation experiments:
Test functions and datasets. https://www.sfu.ca/~ssurjano/optimization.
html, 2023. Accessed: 2024-06-18.

[49] Michael J.D. Powell. A direct search optimization method that models
the objective and constraint functions by linear interpolation. Advances in
Optimization and Numerical Analysis, pages 51–67, 1994.

[50] Rainer Storn and Kenneth Price. Differential evolution – a simple and
efficient heuristic for global optimization over continuous spaces. Journal
of Global Optimization, 11(4):341–359, 1997.

[51] Adam P Piotrowski, Jaroslaw J Napiorkowski, and Agnieszka E Pi-
otrowska. Particle swarm optimization or differential evolution—a com-
parison. Engineering Applications of Artificial Intelligence, 121:106008,
2023.

[52] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren
Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua
Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W.
Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman,
Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald,
Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Comput-
ing in Python. Nature Methods, 17:261–272, 2020.

YURY CHERNYAK received a B.A. degree in
Mathematics and Physics at Hartwick College, and
his M.S. degree in Physics from SUNY University
at Albany in 2022. He began his doctoral studies
at the Institute of Physics, Slovak Academy of
Sciences in 2023.

IJAZ AHAMED MOHAMMAD is a senior
Physics PhD student specializing in quantum com-
putation. He finished his B.S and M.S in Physics
at Indian Institute of Science Educational Re-
search(IISER), Mohali, India in 2021. He was an
INSPIRE-SHE scholarship recipient from 2016-
2018. He started his doctoral studies at Institute of
Physics, Slovak Academy of Sciences in 2021. He
has contributed two research articles in the field of
quantum information and computation.

NIKOLAS MASNICAK Recieved his B.S. and
M.S. degree in theoretical physics from Masaryk
University in Brno, Czech Republic in 2022. He
started his doctoral studies at Institute of Physics,
Slovak Academy of Sciences in 2023.

MATEJ PIVOLUSKA is a Senior Engineer at
Quantum Technology Laboratories in Vienna, spe-
cializing in quantum optics, quantum cryptogra-
phy, quantum information processing, and quan-
tum computing. With a PhD in Informatics from
Masaryk University, he has held various research
positions, including at the Austrian Academy of
Sciences and the Slovak Academy of Sciences.
Pivoluska has contributed extensively to high-
dimensional quantum key distribution, quantum

entanglement, and quantum computing, with over 30 published articles.

MARTIN PLESCH is a physicist specializing in
complex physical systems and quantum informa-
tion theory. He is an independent researcher at
the Institute of Physics Slovak Academy of Sci-
ences and a Professor at Matej Bel University
in Bratislava. With a PhD from the Institute of
Physics Slovak Academy of Sciences, Prof. Plesch
has held significant roles, including Head of the
Department of Complex Physical Systems and
Marie Curie Fellow at Masaryk University Brno.

He has received numerous accolades for his research and educational contri-
butions, including the Prize for Popularization of Science and the “Social
Innovator” award. Prof. Plesch is also actively involved in international
scientific committees and educational initiatives, serving as a President of
the International Young Physicists’ Tournament and the World Federation of
Physics.

12 VOLUME 11, 2023

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a) (b)

(c) (d)

FIGURE 4: Comparison of the performance of different optimizers on constant dimensional (dimension = 2) test functions.
(a) Cross-in-Tray: Apart from COBYLA, all the other optimizers converge to a minima, with HOPSO and PSO performing
the best. (b) Beale: Except for COBYLA, all other optimizers converge to a minima, with HOPSO showing the greatest
performance. (c) Goldstein-Price: Here COBYLA and PSO do not converge to the optimum unlike DE and HOPSO, with the
latter outperforming its rival counterparts. (d) Drop Wave: All optimizers except HOPSO fail to converge to a global minima.

VOLUME 11, 2023 13

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a) (b)

(c) (d)

(e) (f)

FIGURE 5: A comparison of the performance of different optimizers on varying-dimensional test functions. All test functions
here are chosen to have a dimension = 10 except for Michealwicz, whose dimension is chosen to be 5. (a) Ackley: All
optimizers except HOPSO fail to converge to the minima. (b) Rastrigin: All optimizers fail to converge to the minima.
However, HOPSO performs the best among them. (c) Schwefel: All optimizers fail to converge to the minima. Here however,
DE performs the best. (d) Griekwank: All optimizers fail to converge to the minima. However, HOPSO’s performance is
significantly better compared to the other optimizers. (e) Levy: Except for HOPSO, all optimizers fail to converge to the
minima. (f)Michealwicz: All optimizers fail to converge to the minima. HOPSO and DE perform the best among them.

14 VOLUME 11, 2023

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a) (b)

FIGURE 6: A comparison of the performance of four different optimizers on Unimodal test functions. (a) Sphere: All
optimizers converge to the minima. For higher precision scenarios, HOPSO and PSO perform the best. (b) Rosenbrock: All
optimizers fail to converge to the minima every time. However, DE and COBYLA perform better in comparison to PSO and
HOPSO.

(a) (b)

FIGURE 7: Comparison of the performance of HOPSO with varying λ based on the scaling factor s with DE on Michalewicz
and Rastrigin functions. The green triangle represents the mean of the distribution and the yellow line representing the median.
It can be seen that by fine-tuning the scaling factor HOPSO outperforms DE. (a) Michalewicz : The results of HOPSO with
scaling factor set to 0.1 and 1 outperform the previously best-performing optimizer, DE. (b) Rastrigin: The results of HOPSO
with the setting of the scaling factor s to 1 outperforms the previously best-performing optimizer, DE.

VOLUME 11, 2023 15

