TOPICS IN QUANTUM THEORY

Mathematical structures of quantum theory

1. States
(definition, convexity, boundary, discrimination, Bloch sphere)

2. Effects
(definition, convexity, Gleason’s theorem, ordering)

3. Observables and Measurements
(definition, convexity, incompatibility, informational completeness,
PVM, POVM)

4. Channels
(definition, convexity, Stinespring’s theorem, Choi-Jamiolkowski
representation,examples)

5. Time evolution
(Schrodinger’s equation, Lindblad equation, Markovianity)

6. Quantum entanglement
(definition, LOCC ordering, distillation, bound entanglement,
witnesses, PPT criterion)

7. Multipartite entanglement
(definition, GHZ states, W states, quantum secret sharing)

Introduction to gquantum information processing and
uantum algorithms

1. Qubits
(Bloch sphere, superposition vs mixtures, composite systems and
subsystems, Bell basis)

2. Qubit gates
(examples, universality, decoherence)

3. Quantum algorithms
( Berstein-Vazirani alg., Deutsch-Josza alg., Simon’s problem)

4. Implementation
(ions, photons, qdots, superconducting qubits, diVincenzo criteria)

5. Quantum key distribution (one-time pad, BB84, E91)

6. Bipartite communication protocols
(g-teleportation, quantum dense coding, entanglement swapping)

7. Fourier transform and Shor’s factorization algorithm
8. Grover’s search algorithm

9. Shannon Information theory
(information, entropy, communication capacities)

10. Quantum error correction
(bit flip error correction, Shor’s 9 qubit correction code)



Basics.

Qubit: 2-level system Superposition:  Linear combination of Basis States

[¥) = al0) + B[1) ¥) = Y el

0 0 orthonormalzbasis {11)}
b |'¢)—cos< ) |0>+ez¢Sln(2> 1)

Born Rule:
P(i) = ||’

Z|Ci|2 =1

Matrix elements of Operator O : l ,¢> — Z czlb2
Oij = (bi|O|bj) | (Basis states) i
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= (bil) °




under the hood...

- Experiments

- interference/wave formalism

- Linear algebra rules, hilbert spaces.
- Group theory



Basis Change for States:

{|6:;)} Basis Representation & Conversion
Quantum State psi can be represented in different bases |¢> =

{ |C >} (Basis states)
_— 9

[— {lb:)}
) = Z c;|b;) Suppose you want to express the same state in a new basis

ci = (bi|v)
|¢> = Zcz‘|bi>

Change of basis is accomplished by expressing the | b> — § : I[Tx | c >
old basis in terms of the new basis: = 4 Je1™]
i

So now new coefficients of the state psi in the new basis are: U ji = <Cj |b2>

dj = ZUﬁci — J: UZé (In matrix form) E

Basis Change for Operators:

In the context of basis changes:

A ) ) ) — columns of the matrix represent the old basis vectors (in this case b i)
Oij - <b@ |O | b]> Matrix elements in b-basis — rows represent the new basis vectors (in this case c¢_k)
Suppose you want to change to a new basis: {‘Ck>}

Then, old basis can be written in terms of new basis as: |b;) = Z Uki|ck)
k

Matrix elements of old Operator O are written in the new basis as:

921\2 ZUkiOijUf} = 0' =UoU!

4
oW column ¢,J]

[L————— U s the unitary matrix that transforms between the two bases



Re-iterated (Basis
change)

Operators {j.,); ——  {ju)) Example: {[61),162)} == {le1)s le2)}
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States Example: The transformation
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A= Swil Aluy) a Aﬁ;= Soj1 Aloe? ) (1) the two bases
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Summary of basis transformation

{lui)} )}




Convexity:

convex set is a set of points such that, for any
two points withini the set, the line.connecting

MIXED STATES &
Density Operators

In quantum mechanics, convexity for quantum states

pick any two points inside the
shape and draw a straight line
between them, that line will be
entirely inside the shape.

concept is central to the description of mixed states and

of different pure states.

represent a system being in different pure states with

a real-number set like the
interval [0,1], any point between
o and 1 (such as 0.5) is also in

e set. So, the interval [0,1] is

pure states, which cannot be decomposed into a convex
combination.

convex set of states, meaning that it cannot be
decomposed further as a mixture of other states.
Convex Set of Quantum States: The set of allfvalid
quantum states (density matrices) forms a con
meaning any convex combination of valid qug

A set of quantum states is convex:

certain probabilities. Mixed states are distinguished from

Pure States: A pure state is an extreme point of the &

httim states| -

Pmixed = p0‘0> <0’ +p1‘1><1’

refers to the idea that mixed states can be expressed as a
convex combination (weighted sum) of pure states. This

represents how they can be viewed as statistical mixtures

Mixed States: Convexity applies to mixed states, which

Sa .

00 =(3) 0 9=(5 o)
mal=(3)e v=( 1)
Pmixed = %O 1?1
:-_-_-...1- _ pure state

mixed state

totally mixed
y

is also a valid quantum state.

Ppure = [¥) (V|
Pmixed — sz‘¢z><¢l|

= Pure States >> Surface

= Mixed States >> Interior

— Any point inside ball is a
probabilistic mixture of pure states

a maximally mixed
state if p0 = pl = 0.5.

7



Reduced DenSitV Onerator & Trace Interpretation of Reduced Density Matrix:

p 4 captures all the information available about subsystem A, ignoring any correlations or

Consider a bipartite system 4 and B. The entanglementwith subsystem 5.

If A and B are entangled, the reduced density matrix p4 will describe a mixed state, even if

state of the system is described by a

the combined system AB is in a pure state.

dGIlSlty matrix (elther Il’llXGd or pU.I'C)I p A B . Purity of the Reduced Density Matrix:

The purity of a state can be gquantified using the trace of the squared reduced density matrix

p 4. For a mixed state:

Reduced Density Matrix is obtained by tracing Tr(p3) <1
out the degrees of freedom of subsystem B If p4 describes a pure state, the purity is 1:

Tr(ph) =1
pa = Trp(paB)

Example of Entanglement and Mixed States:

" s\ 1 (1 1 :
Partial Trace Operation: For an entangled state like |®*) = \—5(‘00) + |11)), the reduced density matrix for

subsystem A is:
The reduced density matrix p4 is obtained by tracing out the degrees of freedom of

1
subsystem B from the full density matrix p4p. Mathematically: pa=Trg(|2")(®]) = —2-(|0)(0| + (1) (1))

pa = Trp(paB) = Z(bj|pAB|bj) which is a mixed state.
J
where {|b;)} are the basis states for subsystem B. The partial trace sums over the 8

probabilities associated with the states of subsystem B, leaving the reduced state for A.



MOI‘e on denSitV matrix: Distinguishing pure and mixed:

Pure state: There will always be a basis in which you
Hermitian: 1- will get measurement outcome being the same

(so eigenvalues are p T p values (so, 100%)

/ b
real numbers) Mixed state will be always be less than 100%

because its not

Normalization: Ty (,0) —1

(probability sums to 1)

Positivity:

(density matrix must be a <¢ | p | ¢> Z 0

positive semi-definite, so
probabilities aren t negative)

For Pure State For Mixed State

pP=p
Tr(p*) =1 Tr(p®) < 1



Formalism Comparison:

Pure State:

. State Notation: [1))

« Density Matrix Formalism: p = [1)) (1|
Mixed State:

« State Notation: (Not applicable)

« Density Matrix Formalism: p = > . pi[1;) (v
Measurement Probability:

. State Notation: P = |(¢|1))|?

. Density Matrix Formalism: P = Tr(p|¢)(®|)
Evolution (Unitary):

. State Notation: [¢)') = U|v)

. Density Matrix Formalism: p' = UpU'

Superposition:

. State Notation: [p) = ¢1|0) + c2|1)
« Density Matrix Formalism: p = |c1|2|0)(0| + |c2|?|1)(1]
Projective Measurement:

. State Notation: P = (1|O|s)

« Density Matrix Formalism: P = Tr(pé)
Trace:

» State Notation: (Not applicable)

« Density Matrix Formalism: Tr(p) = 1
Ensemble Average:

. State Notation: (O) = (1|O|v)

« Density Matrix Formalism: (é) — Tr(pé)
Partial Trace:

« State Notation: (Not applicable)

10
« Density Matrix Formalism: pa = Trp(paB)



Coherence vs.

Decoherence.

Coherence vs. Decoherence
Pure State: Coherence Maximized

* In a pure quantum state, the system exists in a superposition of states, and the coherence is
fully preserved. The quantum system exhibits quantum interference, which is a hallmark of
coherence. The state can be represented by a wavefunction.

Decoherence: Transition to Classicality

* Decoherence is the process by which a quantum system interacts with its environment,
causing it to lose its coherence and behave more classically. The system transitions from a
pure state to a mixed state, often described by a density matrix.

Role of the Density Operator

* In the density matrix formalism, the off-diagonal terms represent the coherence between
different quantum states. As decoherence occurs, these off-diagonal terms diminish,

reflecting the loss of superposition and interference.

» Eventually, the system becomes more classical, with only the diagonal elements of the density
matrix remaining, corresponding to probabilities rather than coherent quantum states.

11



Effe cts . Represents possible outcomes of a quantum measurement A “Positive Semi-Definite” Ope rator

e Each outcome is described by: (¥l4[¢) 20 forall [¢)

effeCt (0] peratO r Em Useful for state discrimination

e Set {FE,,} for all possible outcomes:

“VYon Neumann Measurement”

“POVM”
Positive operator-valued Measurement - specific case of a PVM
- Operators are: rank-1, orthogonal,
‘PVM” that correspond to a specific observable.
Projection-Valued Measurement - measurement outcomes correspond to the
- specific case of a POVM eigenstates of the observable being
- operators correspond to orthogonal projectors. measured, and the system collapses to one of

- do not necessarily correspond to the eigenstates of a
particular observable

- may be of higher rank (i.e., could project onto
subspaces rather than single states)

those eigenstates.

Py =0)(0], P =|1)(1

Z-basis (Computational) :

{P } Completeness e X-basis (Superposition) : P+ = | +> <+ | . P_ — | _> <_ |
L Y P,=1I PrPn = 0mnPm ypasis (superpostion + 1 P = |i){i|, P-i=|—1){X]
m



Effects 2 Positive Operator-Valued Measurements (POVM)
Pro iective Measurements (PVM) POVMs allow for more general outcomes that do not

necessarily correspond to eigenstates of observables

Completeness

D _ B =1I
Relation: Zz R =1 EZ:

Forms a complete set of orthogonal projectors.
Every possible outcome is accounted for by one of the projectors.

Orthogonality not necessary!

|:> Each POVM element is positive
semi-definite operator!

Each operator E,,, in a POVM is not necessarily Hermitian in general, but it is positive semi-
definite. That means (| E,,,|¢) > 0 for any state |1), ensuring that the measurement

Orthogonality: ﬁzﬁj — 5z’j ]32

probabilities are non-negative.
Orthogonality reflects the fact that
measurement outcomes are mutually Also, Hermitian Requirement: Note that AT A is always Hermitian, even if A itself is not. This is
exclusive in projective measurements (P)**2 = (P) because:

Positive Semi-

Definite <¢|pz |¢> >0 (Af4)t = Af(A")T = T4

So while POVM elements don't have to be Hermitian, they can always be written as the

Operators: R > 0 product of an operator and its adjoint, ensuring positivity and Hermiticity.

PVMs return eigenvalues of the corresponding observable. When you measure, the system
= el genva[ues are non_negaz‘ive is projected onto one of the eigenstates, and the measurement outcome corresponds to that

it - igenstate.
= ensures the probabilities derived from cigenstate

) PVMs represent a special case of measurements where outcomes correspond to projectors 13
measurement outcomes are non-negative onto orthogonal eigenstates.



Example & Difference of POVM, PVVM, Von Neumann

3. Informational Completeness:

e  POVMs will naturally lead into informational completeness. You can explain that a set of
measurements is informationally complete if it allows you to fully reconstruct the

quantum state.

* You could also discuss how quantum state tomography uses informationally complete

POVMs to reconstruct the density matrix of an unknown quantum state.

14



Gleason’s Theorem

For any separable Hilbert space H with dimension greater than 2 (i.e., dim(’H) > 3), any
measure on the set of projective measurements (also known as projection operators) can be

uniquely represented by a density matrix p.

The probability p of observing the system in a state corresponding to a projection In the case of
operator P (which represents an observable) is given by: ¢ — <¢|P|¢> ey purestae

Gleason's Theorem shows that any rule for assigning probabilities to measurement outcomes must follow this form — that is, there is no
other way to consistently assign probabilities to measurements other than the Born rule using a density matrix to represent quantum states.

When the system is described by a / . 0.5|¢1> <¢1| .\ 0.5|¢2> <¢2|
density matrix, the probability p of

7

measuring a specific outcome associated p= Tr(pP) p = Tr (0.5]11) (1| P) + Tr (0.5|1)2) (12| P)
with a projection operator P (associated \/

ith the measurement outcome you're . ST A LS

interested in) is given by: | ) ‘ Tr(4) = Z<’|A|’>

Trace operation essentially sums over the contributions from each "
possible pure state in the ensemble, weighted by the classical LR R
probabilities
— shows how each pure state interacts with the measurement operator P 15




Observables.

Observables = Matrices: Ex: 3x3 matrix

- Observables are Hermitian Operators
a b+ic d+ e

A: AT - A= |b—ic f g+ ih
A A d—1ie g—1ih k

= all eigenvalues of the observable are real numbers

(i.e. measurement number must be real) - q, f; k are REAL

A
diagonal elements of a Hermitian matrix must be real

Measuring observable A projects the system

into one the eigenstates |’(pn> with associated eigenvalue an

Aly,) = anly)

Eigenvalue Equation!

Basis Representation:

16



Operator Gate(s) Matrix

Gates = Matrices = Operators

Pauli-X (X) P 1

(Qubits = Vectors = States) )

Pauli-Y (Y) 3 4

e X-Gate (NOT Gate): Flips the qubit between 0 and 1 state Pauli-Z (Z) [1 _o]

e Z-Gate (Phase Flip): Adds phase shift (a 11 - rotation about Z-axis)

. . . . . . Hadamard (H)
e Y-Gate: Applies 11- rotation around the Y-axis, combines bit + phase flip

e Hadamard Gate: Creates superpositions from computational basis states Phase (S, P)

—i.e converts to +/- basis

M B ¢ B R G

| /8 (T) o e
e  S/T Gates: Apply phase shifts
e CNOT: Entangles qubits Controlled Not 010 0
(CNOT, CX) & o i G
= a|0) + p|1 —a 1 0 0 O
%) 'H) A1) Controlled Z (CZ) [3 i3 o
a = COS— e
2 0 0 0 -1
g =e? sing
1 0 0 O
0 0 1 0
4 X ; SWAP [o 1 0 0]
al0) + B|1) —=—P|0) + a|1) 0 0 0 1
a|0>+ﬁll> _Z’GIO)—[fll) 1 0 0 0 0 0 0 O
i Toffoli 6 0 1060 0 0 o
a|0)+ﬁ|1) —’} -ﬁi|0)+m|l) (CCNOT, 3 :) 8 1 (11 3 8 8
CCX, TOFF) 6 000 0 0 1‘}7?

H [0)+1) [0-11)
al0) + Bl1) ——« Wi +B N



Universality : Universal Quantum Gate Set M ore on Gates General Rotation about any arbitrary axis,

R.(6). R,(9), R6) P(¢) CNOT A = (ng,ny,n,)
CNOT, H, T gate .

Ll e g R;(0) = e~ i3 (neoatnyoytn.o;)

TOfth gate + Hadamard Oz, Oy, and o, are the Pauli matrices

Rotate a qubit state by theta around n-axis,

$(6)) = e 37 [1(0))

rotates the state around the
Z-axis by an angle phi \0>j+_i|1>
2
[ 0 } [1 0 _ Y

_ 1 — T
Phase Shift P(‘P): |:1 0 ] Zf:o eim 0 71} P (m) X
Gate maps: 0 e 6 (1J e?%]:[(l) (3]:13(%):\/7 &
ip r
0) = 0)and 1) = €#11) |1 0T 0oy B

square root of the NOT gate is any gate U such that [J2 = X 18
JNOT gate twice is equivalent to applying the NOT gate once



. Pauli matrices are used as generators of rotations for qubits:
Example:

(0 (0o =\ __ (10
Rotation Operations for Spin-% Systems (Qubits): o (1 0> C (7’ 0 ) S <0 _1_)
Ra(0) = e 377 — =i (motmoyinar) | o = 10)(1] + [1)(0
; ] ay = i(|1){0] = 10)(1])
e 877 _ cog (5) I — 1sin (§> (ngop +nyoy, +n,0;) o, = [0)(0] — [1)(1] 4
i+ G = Ng0z + Nyay + N0
0 c i (0
R,(0) = <_‘;°SSHEE()9) _Cz()s:z@()i)) () = cos (3 ) (10)0] + [1)a) ~ sin (5 ) (0)0] + 1)(0)
2 2
cos () —sin (£
R,(0) = (Sin ((33)) o (é"j)) Ry(6) = cos  3) (0)(0] + [0 +sin (3 ) (101 - 0} a)

R.(0) = (e(f ?e) R.(6) = e4{0)(0] + ¥ 1)1



. Pauli matrices are used as generators of rotations for qubits:
Example:

(0 1 o — 0 —2 o — 1 0
Computational Basis 9z = \1 0/’ vy \7z 0)° = \0 -1

H = =5 (10)(0] + [0)(1] + [1){0] — [1)(1]) op = 0Y(1] + [1)(0]
1 /1 1
H=— ( )%
Superposition Basis \/i 1 a 1
|+) = E(\O) + 1)) l , Swap operator, S
1 H="7 (10)(+] + [1)(=1) and T gates,
|—) = 7(|0> 1)) explain CU
d 1 0 O 0
H=—2(|+><+|+!—><—D 100 0 01 0 o
R I L
0 01 0 _0 0 Ui Uil _

H|-) =]|-) CNOT = [0)(0| ® I + |1)(1| ® &y



Hadamard + CNOT = entanglement

H = Superposition:

Initialize: ‘ O O >
Superposition: ﬂ H

—+(10) + 1)) ®0) = =(]00) + [10))

| cnort
Entanglement: %(|00> -+ |]_1>)

(Bell Basis)

Hadamard + Phase (S, T) = Phase Kickback

Introduces controlled phase shifts between basis
states (phase rotations .critical for interference)
Used in phase estimation in Shor’s factoring
algorithm, Quantum Fourier Transform (QFT)...

Hadamard + Z = Phase Flip Superposition

Phase Flip:

Examples of Gate
Combinations to
know

|z HZH = o
1(j0) - 1)

(10) +11)) ®[0) = 5(/00) + [10))

S

2

Grover's Oracle

U, = H"ZH®"

HYyXH=+Z=S
Hadamard Transform:
1
n—1 1 1 1 . 1 -1
Q) = — 5—7§mwm+m+u—W—v¢gyw
1
1 0 0 O]
SWAP — 0 0 1 O
0 1 0 O
0 0 0 1




Mathematics Slide ihditltﬁ(t)) = H|t)(t)) mmmmmmmms  [15(t)) = €~ $H12[1(0))

Taylor Series:

Z"" Mt)" t> _i
eMt: ( ') :I+t +_M2+"‘ ) € th:
n! 2!

n=0

Differential Equation: 3(t) = eMig,

n

M 2 Y o Bt o B o
emj’UO = toﬂ/[O’Uo + thl’Uo + EMZ'UO + EM&U() A e wpe —.M”’UO
n.

i 1 ' 2
I——Ht+—(——-H o
ht+2!( t)+

Visualization of x(t) = xoeMt and %x(t)
er

Mix(t)

P t2 ‘ tn~1 .
= Mgy = M (M, + £ M Ty + = MG+ - + M-
d sni- M -
%etjlv[) - M (etﬂlvo) |
Time t
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Incompatibility Heisenberg Uncertainty Principle

.. gives a lower bound on the product of the

Two observables are said to be incompatible if they do not commute uncertainties (or standard deviations) in measuring two
A A observables simultaneously
Commutes [A, ]
[A, B] — AB — BA Does not T D

A 1
commute [A7B] 7é AA-AB 2 §|<[A7 B]>|

e

measures the extent to which the two

operators fail to commute with each other ¢ AA s the uncertainty in observable A, defined as AA = /(A%) — (4)2.
(i.e. order of their measuring matters)

e AB is the uncertainty in observable B.

, B
. ([A, B]) is the expectation value of the commutator in a given quantum state.

0
8,8 =#p—p=ih === Az-Ap> g

= cannot be measured simultaneously with arbitrary precision

~ ~

is the commutator of the two operators Aand B.

Note:
Operators that commute with each other share a common set of
eigenstates, meaning they can be measured simultaneously. 23



Informational Completeness

A set of measurements is informationally complete if it provides enough information to fully reconstruct the quantum state.

Example:
Projective Measurements on Mutually Unbiased Bases (MUBs)

For qubits, measurements in three orthogonal bases (z, x, y) to
provide complete information about the quantum state

1
p = 5 (I -+ TrOy -+ Tyay - TZUZ)
[ 1s identity matrix Pa\uli Matrices

T Ts the bloch vector: Tz Ty, Tz

crucial in quantum state tomography, where multiple measurements on
different bases can fully determine the quantum state.

for informational completeness, we need to measure
different observables, often represented by

incompatible ones e



C H AN N E LS Definition:

A quantum channel models the evolution of a quantum system
under the influence of noise or interaction with an

Mathematical Definition

environment
A quantum channel is a mathematical map E Purpose:
that takes a density matrix () to understand how a quantum state (represented by a density
and transforms it into a new density matrix & (p) matrix) changes when subjected to this noise or interaction.

Properties:

. A completely positive,
1. Completely Positive trace-preserving map can be
2. Trace Preserving described as:

E(p) = ZKz-pKf ¢ )

A quantum channel can be seen as a "pipeline"

K Kraus Operators, that transfers quantum states (or ipformatipn)
describing specific action of the channel from one system to another, while possibly
subjecting the state to noise, decoherence, or

Z KJKz =1 interaction with an environmen,



Complete-Positive (CP) Trace-Preserving (TP)

e if it ensures the positivity of density matrices even e ensures that the quantum state remains properly

when it acts on part of a larger entangled system normalized after the channel acts on it:

e Positivity Condition: g(p) >0 Tr(g(p)) —1

e Complete Positivity: e In terms of Kraus operators:
If you extend the channel Epsilon to an Identity operation on an t
auxiliary channel system, the output will still preserve positivity. E K 7 i i =
1
I®&)(pap) =20
Extended system
Auxiliary system Trace preserving is like

completeness relation—its soGit
doesn’t “lose probabi112ty”



g /i lied For a single qubit, he channel can be described
late gjter appiie / using the following Kraus operators:
p = § : Kip KzT N g g p
7

Types/Examples of Channels ...
Ko=+\1—-pI, Ki=.pZ

Dephasing Channel: This type of channel causes a system to lose coherence in its phase. > where p is the probability of a phase flip, / is
the identity matrix, and Z is the Pauli-Z matrix

Essentially, it destroys the relative phase information between quantum states, while keeping
The action of the dephasing channel on a density matrix
_J p is given by: ’
p = (1-pp+pZpZ

their populations (probabilities) unchanged.

Amplitude Damping Channel: This channel models the loss of energy in a quantum system, - 1 0 — 0 Vv
P ping gyinagq y Ko<m>’K1 (00

typically represented in systems that interact with their environment (like photon loss or
v is the probability of the system losing energy

spontaneous emission in quantum optics). This channel tends to map excited states to (damping rate)

ground states over time, leading to energy loss. The action of the amplitude damping channel on a
density matrix p is given by"
~ ¢ = KopK} + K1pK]
Depolarizing Channel: In this channel, the quantum system becomes more mixed over time.
This channel acts to bring the quantum state closer to a maximally mixed state, meaning that For a qubit, the depolarizing channel acts as:
the system loses any preference for being in a particular quantum state and becomes > P=0—-p)p+ p (XpX +YpY + ZpZ)
3
maximally disordered. .. .
Y The depolarizing channel can be seen as adding
random noise to a quantum system. . o ) )
J Probability of bit-flip occurring (i.e. error)

Entanglement-breaking Channels: These channels completely destroy the entanglement B]t—ﬂ]p \
between quantum states. Once a quantum state passes through such a channel, it no longer Ch&l’ll’l@l: B (p) — ,n.XpX1' + ( 1 _ ,n.) p 27

holds any quantum correlations with other states, making it completely classical.



The Core Idea:

Stinespring’s Theorem

Stinespring’s theorem asserts that every completely
positive map can be represented as unitary evolution on a

Stinespring's theorem tells us that any completely positive map (like a quantum channel, which

evolves quantum states while interacting with the environment) can be thought of as a unitary

evolution on a larger system that includes the environment.

larger Hilbert space (the system plus environment), In simpler terms, you can imagine the quantum channel as part of a bigger "story" where your
followed by a partial trace over the environment. This quantum system is interacting with a larger environment, and the total evolution of the system and
result is foundational because it links noisy, potentially the environment together is described by a unitary operator (which represents noiseless,
irreversible quantum evolutions to a deterministic, reversible quantum evolution). Once you include the environment, you can fully describe the
reversible evolution in a larger context. process using a simpler, "nicer" structure (unitary evolution).

L.e. Stinesprings Theorem helps model quantum noise as a If we have a quantum channel £ acting on a state p, Stinespring's theorem says there exists:
unitary evolution on a larger system (system +

environment), followed by tracing out the environment 1. A unitary operator U on a larger Hilbert space Hystem ® Henvironment:

—.i.e. even if we focus ona noisy, open SYSFem’ Wwe can 2. Aninitial pure state |eg) in the environment's Hilbert space, such that:

view the overall system (including the environment) as

undergoing unitary evolution. The noise is a result of our E(p) = TLen; ; (U( p® |eo)( €0|)UT)
- ENVITONMEN,

lack of access to the environment, and this is
mathematically modeled by tracing out the environmental

This equation says that the evolution of the system and environment is described by U, but we
degrees of freedom.

only care about the system, so we trace out the environment to get the effective dynamics.

Imagine your quantum system as a ship in a sea of waves (the environment). On its own, the ship is rocked and battered by the waves (noise), and its trajectory
looks complicated. But if you zoom out and consider the whole ocean (the system + environment), the ship’s movement and the waves are part of a larger,
coherent motion.

.. . . . . . . . . 28
This is what Stinespring’s theorem shows: even noisy processes can be viewed as part of a larger, unitary evolution when you include the environment.



Shannon Information Theory Zp(wz log, p(z;)

For a discrete random variable X, which can take on values J
q}n) Shannon s

L1y L2y ...y Ly with corresponding probabilities p($1),P(CU2), .
Entropy

Measures the uncertainty or information content of a random variable or a message.
i.e: quantifies how much "surprise"” or "uncertainty" there is in the outcomes of a probabilistic system

e Highly probable = provides little new information = low entropy log ( 8) —3 |
e Highly uncertain = provides lots of new information = high entropy 2

Shannon s entropy gives a way to quantify the "average" amount of information produced by a random process.

PROPERTIES And minimal

entropy when

H ( X ) > () is always non-negative because probabilities are between 0 and 1 /tcome is certain
Maximal Entropy = when all outcomes are equally probable (maximum uncertainty) by —

I » plx;) = % foralli — H(X) = log,n 10gb(a;)_:




continued.... Example: F (coin flip) = — ( % lags % + %logz %) _ 1bit

quantum-analogue,

Measures the mixedness of a quantum state.

— A_pure state has entropy 0
S (P ) — —Tr(p 1Og2 P ) — A mixed state (which represents uncertainty
___— about the quantum state) has positive entropy.

Von Neumann Entropy

quantum systems, where

Density : ;

_ uncertainty arises due to the
matrix mixedness of quantum states Entanglement entropy: measures the degree of
entanglement between subsystems of a - system
S(pa) = —Tr(palog, pa)

For bipartite quantum system, the entanglement entropy
e IfS ( p A) — () System is not entangled, and is the Von Neumann entropy of the reduced density matrix
' subsystem 4 is in a pure state . . . .
of one subsystem. —i.e. how much information you gain

e IfS ( ) >0 System is entangled, meaning that the state of  gbhout one subsystem by observing the other subsystem.
p A ! subsystem 4 depends on state of subsystem B

— larger the entropy, greater the entanglement

Holevo bound: Quantum Relative Entropy: measures the

Know that quantum systems can encode classical information, "distance" between two quantum states
and the Holevo bound gives an upper limit on the amount of

classical information that can be extracted from quantum states S ( p| IO' ) = TI‘( p(log p — log () )) %0



Seperable States vs. Product States

Product State: no entanglement between them. |¢ AB) - |,¢ A> R |¢B> Pure product state ‘ p A ® p B

A product state is a quantum state of a composite system that can be written as a tensor product of the states of individual subsystems.

Seperable State: separable states are not entangled

A separable state is a state that is not entangled, but it may not necessarily be a pure product state. It can be written as a convex combination (i.e..

probabilistic mixture) of product states.

Example: PAB = bi (pA X pB)
Consider a system where A and B could be in different states depending on the outcome of some & \

probabilistic process. For example, there could be a 50% chance (p; = 0.5) that subsystem A is

in state p}4 and subsystem B is in state p}g, and a 50% chance (py = 0.5) that subsystem A is in separable states can be classical

state 9?4 and subsystem B is in state p}zg . mixtures of more than one product state

Thus, the total density matrix for the system would be:

pag = 0.5 (p3 ® pp) + 0.5 (p% ® pp)

In this example, iii takes two values, 1 and 2, corresponding to the two possible product states. 31



Entangled States

GHZ-

“bell state in 3 particle entanglement”

H

L } [000)+]111)

/2
N é 5

The W state is the representative of one of the two non-biseparable
classes of three-qubit states, the other being GHZ

W) =

i3(|001> +1010) + [100))

Bell Basis:

@) = 7(|00>+|11>)
B = % (l00) — |11))
1
23 -
¥) = 5 (01) +[10)
Ty = —— (jo1) — [10))

7

Maximally entangled

32



1. PPT (Positive Partial Transpose) Criterion:

The PPT criterion is used to determine whether a bipartite quantum state is separable or

entangled.

Given a density matrix p4 5 that describes a bipartite system with subsystems A and B, the
partial transpose is an operation that transposes only one subsystem (say, A) while leaving

the other subsystem (say, B) unchanged.

The density matrix p 4 is said to satisfy the PPT criterion if, after performing the partial
transpose, the resulting matrix still has non-negative eigenvalues (i.e., it is positive semi-
definite).

If the partial transpose of a density matrix p 4z results in a matrix with negative eigenvalues, t
state is entangled.

2. Key Mathematical Expression:

The partial transpose is represented as:

Ta
PAB

This means that the partial transpose 1’4 is applied to the subsystem A only. If:

Pip =0

then the state is PPT and could be separable. However, if:

pin 20

(i.e., it has negative eigenvalues), the state is entangled.

PPT Criteria

Checks for entanglement

3. How the Partial Transpose Works:

Let's consider a simple example where the system is in a bipartite state. The density matrix of the

state p 4z can be written in terms of outer products like:

pan =Y cijuli) k| ® [5){1]
ij,kl
The partial transpose of this matrix with respect to subsystem A involves swapping the indices
related to subsystem A (i.e., transpose A's matrix elements), leaving the B system untouched.
The new matrix looks like:

P =Y cijmalk) i @ |31
ij,kl

4. Physical Interpretation:
« If the partial transpose of a state’s density matrix is still positive semi-definite, the state
could be separable (though separability is not guaranteed).

« If the partial transpose yields a matrix with negative eigenvalues, the state is definitely

entangled.

This is especially powerful for detecting entanglement in low-dimensional systems (such as 2 x
2 or 2 x 3 systems), where the PPT criterion provides a necessary and sufficient condition for
separability. For higher-dimensional systems, it is a necessary but not always sufficient condition

for separability.



Flowchart for Unitary vs Non-Unitary Evolution:

Initial State

Evolution
Unitary Evolution Non - Unitary Evolution
o State evolves according to the Schrédinger equation ° State evolves according to the Lindblad equation
e  State remains pure, no information is lost. e  State is affected by environmental interactions (e.g.,
noise), leading to decoherence or loss of quantum
coherence.

34



Choi-Jamiolkowsi Isomporphism

nahh...
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Time Evolution.

e For a closed system, time evolution of the state is governed by Schrodinger's equation:

L d A
ih(8)) = Hl ()

Unitary Evolution: Ut = e—iHt/h

e  Properties: Norm-preserving, deterministic, reversible, no information loss

Li Lindblad Operators:
e For an open system, they evolve according to Lindblad Equation:

dp(t) b o, 25 ~ oo 1 &4

D~ —218,p(0)+ 3 (Lin(OL] - LI p(0)
dt h ; 2 Lindblad Eqn models

Markovian noise: the system

Non - Unitary Evolution: h
as no memory of past

e Properties: Norm is generally not preserved, irreversible, information loss (decoherence) 1nteract1%g1s.



Continuous vs. Discrete Pt. 1

Continuous spectrum of eigenvalues,
and set of eigenstates

Position Operator ()

Iy 0 0
m> 0 T

o

ey =2z

“infinite dimensional” matrices & vectors
A
2Y(z) = ()

()
$(z) = (aly)

“wavefunction”

Example: free particles (not bound in a potential well)

(p|p|p") = pd(p — p')

37



Continuous vs. Discrete Pt. 2

Continuous spectrum of eigenvalues,
and set of eigenstates

Position Operator ()

Iy 0 0
m> 0 T

o

ey =2z

“infinite dimensional” matrices & vectors
A
2Y(z) = ()

()
$(z) = (aly)

“wavefunction”

Example: free particles (not bound in a potential well)

(p|p|p") = pd(p — p')

38



Continuous Case

e State:

e Wavefunction:

¢ Orthogonality:
(z|z') = 0(z — ')
¢ Normalization:

| w@pdz =1

o0

e Basis Change (Position to Momentum):

Discrete Case

e State:

« Wavefunction:

¢ Orthogonality:

¢ Normalization:

e Basis Change (Discrete):

) = i)

Y = <$z|¢>

(zi]zj) = 04

Z il* =1

¢i = Z Uincn

39



Schrodinger
Equation:

S

U
00(\’(‘“00

Time Dependent Time In-Dependent
L d A 2
ih— () = By () H(z) = E(x)

(t) = e H/y(0)
0 N
L 0 _ 7
Zhat¢(mat) ’%b(m,t)
= —ﬁ[ ,p(t)]

e Continuous System:

« Wavefunction 1 (z, t) evolves according to the TDSE or TISE.
e Example: Particle in a box, Harmonic Oscillator.
e Discrete System:
s Vector representation [1(t)) evolves via a unitary operator U (¢).

e Example: Spin-1/2 systems. 40



Example 1:
Infinite Potential Well (Particle in a Box)

Example 2:
Quantum Harmonic Oscillator

Example 3:
Free Particle (Time-Dependent Case)

Example 4:
Spin-1/2 Particle (Discrete System)

Example 5:
Quantum Scattering (Barrier Problem)

Example 6:

Finite Potential Well (Quantum Tunneling)

Example 7:

Quantum Harmonic Oscillator in Three Dimensions

Example 8:
Hydrogen Atom (Coulomb Potential)

Examples

41



APPLICATIONS

(algorithms, implementation etc.)



1. lons (Trapped lons):

Qubits: Represented by the internal electronic states of the trapped ions, typically ®
denoted as |0) and |1), where |0) could represent a ground state and |1) an excited

state.

Operations: Quantum gates are performed using laser pulses. For example, a Hadamard

gate H, which creates superposition, is applied as:

1 1
H|0) = —(|0) + 1)), H|1)=—(|0) -1
|0) ﬂ(l>|>) 1) ﬂ(l>|>)
Entangling Gates: Operations like the CNOT gate between two ions are implemented via .

shared motional modes.

2. Photons (Optical Qubits):

Qubits: Polarization states of photons are used as qubits, such as horizontal |H) and
vertical | V'), or right-circular |R) and left-circular | L).

Operations: Beam splitters and phase shifters apply unitary operations on photon states.

A beam splitter is modeled by the unitary transformation:

Al )

Challenges: Two-photon entangling gates like the CZ gate are non-trivial but can be

Ups =

implemented using non-linear optics or post-selection methods.

Implementation

3. Quantum Dots (gqDots):

* Qubits: Spin states of electrons or excitons in quantum dots represent |O) (spin-up) and

|1) (spin-down):
0)=[1), [1)=1[J)

Operations: Spin rotations are performed using magnetic fields or microwave pulses. The

rotation operator around an axis 7 by an angle @ is given by:
0,
R;(0) = exp e

where o = (0, 0y, 0,) are the Pauli matrices.

Two-qubit gates are mediated through spin-spin interactions like the exchange

interaction, implementing a SWAP gate.

4. Superconducting Qubits:
¢ Qubits: Typically represented by the lowest two energy levels of a Josephson junction-

based superconducting circuit:

|0) = ground state, |1) = first excited state

« Operations: Fast gate operations are performed using microwave pulses. For example,
an X-gate (bit flip gate) on a qubit is applied as:
X|0) = 1), XI1)=10)
« Two-qubit gates: Implemented using tunable couplers to control the interaction between

qubits, typically using a CZ gate:

100 0
~lo10 o
CZ=1lo0 01 o

000 —1

which applies a phase flip if both qubits are in the |1) state.



DiVincenzo Criteria:

Well-defined qubits: Qubits are represented by distinct quantum states, typically |0) and
|1) in a Hilbert space Hs.

Initialization: The system should be initialized into a known quantum state, often |0).

Long coherence times: Quantum systems should maintain superposition, where a
general state is written as a|0) + B|1), with |a/|? + |8]? = 1.

Universal set of quantum gates: This includes single-qubit gates (suchas X, Z, H)
and a two-qubit entangling gate (like the CNOT gate):

1 0 0O
0 1 0 O
ENOT= 0 0 0 1
0 01 O

Measurement: The system should allow for the measurement of qubits in the

computational basis |0) and |1), represented by projective measurements.
44



No Cloning Theorem

The no-cloning theorem states that it is impossible to create an exact copy of an arbitrary unknown quantum state.

Why not?
Quantum states can exist in a superposition, meaning they are a combination of 0 and 1.
Attempting to copy a quantum state involves measuring it, but measurement collapses the state into a definite value ( 0 or 1), destroying the superposition.

prOOf l} > |,¢> — a|0> + IB|1> Qﬁ - Auxiliary Qubit

Let us have unknown g-state Psi. and starting in initial system’s state as: | ,¢> ® |0>

Suppose there exists a unitary operation U that can copy or perfectly clone this arbitrary quantum state.

Eqn. (i) U (|¢> ® |O>) = J¢> ® |¢> _ cloningis to create two identical copies of the
v

) unknown state

For basis {U(l()} ® |O>) — |0> ® |0> TE = (a|0> I ,8|1>) ® (Ol|0> =} /3|1>)

states: U(l1) @ |0)) = 1) & |1) — a2|00> + aIB|01> + aﬂ|10) -+ 132|]_1>

E(()]rn o U ((«0)+81)) ®(0)) Icon'rradic’rion!
=aU(|0) ® 0)) + BU(|1) ® |0)) = «(|0) ® |0)) + B(]1) ® 1)) =a|00) + B[11)  *



BB84 A Quantum Key Distribution

. Example: ubit Alice sends Bob measures Match/No match
Randomly selects sequence of qubits @ !
— some in the Z-basis and others in the X-basis [10), 14, 11}, [=),10), [+)] S o —— Correct match:
a ' Bob gets |0)
Z-basis: |0>, |].> No match: Bob
g;’anruT Second qubit [+) (X-basis) Z-basis gets a random
. 0 + 1 anne result (say, |0))
X-basis: |[+) = [0+1) i/% ) , =)=
i No match: Bob
?}lbh? / Third qubit |1y (Z-basis) X-basis gets a random
assica result (say, |-)
Channel
Randomly chooses to measure each qubit in Example: N fristch: Bob
either the Z-basis or X-basis Fourth qubit |- (X-basis) Z-basis gets a random
[Z7 Z9X7 Z7X7X] result (say, |0))
After measurement, A publicly sends which bases was used to prepare each qubit No match: Bob
Fifth qubit |0) (Z-basis) X-basis gets a random
result (say, |+))

Compare their chosen bases (but not the qubit values), Explained in table: n——)

. . . . . . S Iv. bl T Correct match:
, ) (X-basis) X-basis Bob gets [+)
3,4, and 5).

T

Discard the qubits where their bases do not match (qubits 2 Sixth qubit

Qubits remaining after basis reconciliation form the raw key. raw key: [O, —|‘]

If Eavesdropper (E) tries to intercept the qubits:
E’s measurements would disturb the system
= Alice and Bob would notice errors when they compare a portion of their raw key. 46



1. Entangled qubits are generated and distributed between Alice and Bob:

A pair of maximally entangled qubits is created, typically in the Bell state |®* }, which is:

P
|8%) = E(IOO) +[11))

Alice and Bob each receive one qubit from this entangled pair. The entanglement means
that the measurement of Alice's qubit instantaneously determines the state of Bob's
qubit, even if they are spatially separated.

2. Alice and Bob measure the qubits in randomly chosen bases:

4.

Alice and Bob independently choose random measurement bases for their qubits. The
bases could be:

« Z-basis (computational basis): |0) and |1}

+ X-basis (Hadamard basis): | +) = 2311, |—) = L

If Alice measures her qubit in the Z-basis and gets |0), Bob's qubit will collapse to |0) as
well, due to entanglement. Similarly, if she measures |1), Bob's qubit will be |1). The
same correlations hold in the X-basis.

The measurement results from Alice and Bob are correlated, and these correlations are
later used to generate a shared key.

If the test is passed, the correlated measurement results are used to establish a secure
key:
« After confirming entanglement by testing Bell's inequality, Alice and Bob use their
correlated measurement results to generate a shared secret key. If Alice’s and Bob's

measurements are performed in the same basis (either both in Z or both in X), their
results will be perfectly correlated:

«  Alice measures |0}, and Bob measures |0) (or |1}, |1)).

« These measurement outcomes are converted into binary values (e.g., |0) = 0 and
|1} = 1) to form the shared secret key.

Process:

. Entangled qubits are generated and distributed between Alice and Bob.

Alice and Bob measure the qubits in randomly chosen bases.

Bell's inequality is tested to ensure the presence of entanglement and that no
eavesdropping has occurred.

If the test is passed, the correlated measurement results are used to establish a secure
key.

3. Bell's inequality is tested to ensure the presence of entanglement and that no

eavesdropping has occurred:

Alice and Bob verify their gqubits are entangled by checking for violations of Bell's
inequality. The CHSH inequality is a common choice, which involves calculating a
correlation function:

S = |E(a,b) — E(a,b') + E(d',b) + E(d’,b")|
where a, a’ are Alice's measurement angles, and b, b" are Bob's measurement angles.
The correlation E(a, b) is calculated from their measurement outcomes.

Classical limit: If the measurement resuits follow local realism (i.e., there is no
entanglement), S < 2.

Quantum violation: If the qubits are entangled, they will violate the inequality, resulting in
S = 2.In the ideal quantum case, S = 24/2.

47
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One-time Pad (Classical Cryptography)
« Concept: A theoretically unbreakable encryption technique when used correctly.

* Process:

1. Arandom key (as long as the message) is generated.
2. The key is used to encrypt the message through a bitwise XOR operation.
3. The same key is required by the receiver to decrypt the message using XOR agai

» Security: The key must be truly random, used only once, and kept secret to ensure p
secrecy.

1. Entangled qubits are generated and distributed between Alice and Bob:

« A pair of entangled qubits, typically in the Bell state | ') = % (|00) + [11)), is shared

between Alice and Bob.

« Mathematically, the shared state is:

1
I‘I’shared) = -

7 (100} + [11})

« Alice holds one qubit, and Bob holds the other. The entanglement ensures that any

. Bell's inequality is tested to ensure the presence of entanglement and that no

eavesdropping has occurred:

« Alice and Bob test for violations of Bell’s inequality to verify that their qubits
entangled, which indicates that no eavesdropper (Eve) has intercepted the g

* The measurement results from Alice and Bob should violate Bell's inequality |
measuring entangled states:

S = |E(a,b) — E(a,b') + E(d’,b) + E(a',b')| <2 (classical t

A violation, S > 2, confirms quantum entanglement and the absence of eave

4. If the test is passed, the correlated measurement results are used to est
key:
« The correlated bits between Alice and Bob are now used to establish a

« Forinstance, if Alice's and Bob’s measurements agree (both get 0 or 1i
they use these bits to generate the key.

measurement on Alice's qubit instantly determines the state of Bob's qubit, regardless of

distance.

2. Alice and Bob measure the qubits in randomly chosen bases:

« Alice and Bob each randomly choose measurement bases for their qubits, often between
the Z-basis (computational basis |0), |1)) or the X-basis (Hadamard basis |+) =

0)+[1) |-} = 0)— 1‘:-)
vz ! vz I

« Depending on their measurement outcomes, they obtain correlated classical bits (00, 01, O ne 'tl me P a d

10, or 11).
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Bipartite Communication Protocols 2 party-communication/ information transfer:

Quantum Teleportation

1.

-~

~

-

[$) = al0) + A1)

Entangling Qubits
1
ot = —(]00) + |11
245 = 5(100) +[11)

Transmit unknown state from one location to another without physically transferring the particle.

2 Qubits — 1 sent to Bob, 1 sent to Alice — prepared in a maximally entangled state (Bell State)

The four Bell states are:
Alice has an additional qubit that she wants to teleport

1 1. @) = 75(|00) + [11))
o = (|0 1 —(]00 ikl
|¢>A1 ® | >AzB (al )Al +,B| >A1) ® \/E(lo )AzB + | )AzB) 2. |¢_> — %(|00> |11>)
1
|Imt1al State) = E[Q|OOO>A1AQB + a|011>A1AzB + ,B'].OO)AIAZB + ,B|111>A1A23] 3. |\Il+> — \/Li(|01> + l10>)
1
|Total State) = 2 [|27) 4,4,(/0) + B[1))5 + [27) 4,4,(]0) — B|1)) 5 + [¥7) 4,4, (B]0) = 1
4. 7)) = —=(|01) — |1
+2) 4,4,(810) + a[1)) 5 + [¥7) 4,4,(BI0) — @l1))5] ™) \/§(|O )~ 110))
* If Alice measures |®"): Bob's qubit is in the state &|0) + (1), which is the original state
Alice performs a Bell-state measurement on her two qubits: Alice wanted to teleport.

- qubit she wants to teleport,

- her qubit in the entangled state

This Projects measurement into one of the Bell States:

result

* If Alice measures |®™): Bob's qubit is in the state &|0) — (1), meaning he needs to apply a
Z gate (phase flip) to recover the original state.

If Alice measures |¥'™): Bob's qubit is in the state 3|0) + «|1), meaning he needs to apply a
X gate (bit flip) to recover the original state.

* If Alice measures | ¥~ ): Bob's qubit is in the state 3|0) — «|1), meaning he needs to apply a

= X gate followed by a Z gate (bit flip + phase flip) to recover the original state.



S uper dense COdinq: ) Superdense coding is a quantum

communication protocol that allows the

1. Initial Entanglement: . . .
transmission of two classical bits of

* Alice and Bob share an entangled pair of qubits, say in the state |®") = %(|00) +
1))

¢ Alice has qubit A, and Bob has qubit B.

information using only one qubit. It leverages
the power of quantum entanglement to achieve

this compression of classical information.
2. Encoding by Alice:

* To send two classical bits (00, 01, 10, or 11), Alice applies one of four quantum gates to
her qubit: Alice and Bob share a pair of entangled qubits (in a Bell
state). Alice can manipulate her qubit to encode two
classical bits of information, and then send that single
* For 01: Apply the X gate (bit flip), changing the state to [¥'*) = %(|Ol) + [10)). qubit to Bob. Once Bob receives Alice's qubit, he can
» For 10: Apply the Z gate (phase fiip), changing the state to |&~) = (|00) — measure bgth qubits in the Bell basis and recover the two
I11)). classical bits.

* For 00: Apply the identity gate I, leaving the state unchanged as |®7).

* For 11: Apply the X gate followed by the Z gate XZ, changing the state to |[¥~) =
1
ﬁ(l()l) — [10)). 3. Transmission to Bob:

¢ Alice sends her modified qubit (A) to Bob, who already holds qubit B.
4. Decoding by Bob:

¢ Bob now has both qubits. He performs a Bell basis measurement on the two qubits to

determine which Bell state the qubits are in.

¢ Based on the result of the measurement, Bob can decode the two classical bits Alice

encoded.



E n ta n g I eme nt S wa ng a quantum phenomenon where two particles that have never interacted or shar

entanglement directly become entangled through an intermediary process.

Consider four qubits: A, B, C, and D. Initially, qubits
A and B are entangled, and qubits C and D are
entangled, but A and D are not entangled, nor are B
and C. Entanglement swapping allows us to entangle

A and D without them ever interacting direct]y. « The state of A and D now depends on the outcome of the Bell state measurement on B
and C. For example, if Charlie’s measurement collapses B and C into |‘Il“), then qubits A

3. Instantaneous Entanglement Between A and D:

« Due to quantum mechanics, after the Bell state measurement on B and C, the qubits A

and D, which have never interacted, become entangled!

1. Initial Entangled Pairs:

i - ; and D will also be in a known Bell state.
« We begin with two entangled pairs of qubits:

« Pair 1: Qubits A and B are in an entangled state, say in the Bell state: 4. Final State (Entanglement of A and D):

1 « The final state of qubits A and D after Charlie's Bell state measurement on B and C is
Win) = E(IOO) +111)) determined by the measurement outcome. If Charlie communicates the result of the

« Pair 2: Qubits C and D are also in an entangled state: measurement (classically) to Alice and Bob, they can apply a correction (if necessary) to

recover a specific entangled state between A and D.

1
ULy =—(|00 11 1
¥en) ﬁ(l )+ 111) & The initial state of qubits Aand B:  [¥hp) = EUOO) +[11))
o
« Aisheld by Alice, D is with Bob, and B and C are with Charlie (the intermediary). M The initial state of qubits C and D: |\Il+ ) N 1 (|OO) + |11>)
2. Bell State Measurement on B and C: ¢b \/i
The total state of the system is: 1
« The key step in entanglement swapping is for Charlie to perform a Bell state + + .
measurement on qubits B and C. This measurement projects qubits B and C onto one of I‘I’AB> ® |\I,CD> = 2 (|00>AB |00>CD .5 |11>AB I 11>CD)
the four Bell states: When Charlie performs a Bell state measurement on B and C, he collapses the
1 1 joint state of qubits B and C into one of the four Bell states. For instance, if
o) = 7 (l01) £[10)), [®*) = E(IOO) +(11)) the measurement results in Psi_BC, then the state of A and D will also

collapse into a Bell state, such as PSi_AD. The outcome depends on the regl,lllt

« Charlie's measurement collapses the states of B and C into one of these Bell states, of the Bell measurement, which Charlie communicates to Alice and Bob.

thereby entangling them.



Quantum Fourier Transform

= e27r'i %%

maps a quantum state |;[;> to a superposition of states, with each state weighted by a complex coefficient

On n-qubit g-state |$>

= QFT(jz) =

example:

QFT(|01))

¢ Fory = 0:e*™

;11
e Fory=1:e™7 =

¢ Fory = 2:e’™

¢ Fory = 3:e*™

10

j 12

13

\/2_"

QFT on a 2-qubit state |O]_> n=2,x

Z 2m4 |y

2"—1

Il
—_

1

e71'2'/2 =

g™ = —1
3mi/2 i

used to extract periodicity from quantum states,

§ : e2m o7 | Y X 1s an integer represented in binary form (example):

6 ~ 2 = 3, remainder 0
for x =06 3 +2 =1, remainder 1
1+ 2 =0, remainder 1

= = 1102
General binary

representation. 6=1: 22 +1. 21 +0- 20
T=2, -2 'tz 52" 4. tp -2 Haxy-2°

Final QFT state is:

FT(|01)) = (|00> i|01) — |10) —4[11))

[\ |
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Hadamard Gates: Apply on each qubit to create superpositions.

QFT continued... e Controlled Phase Shifts: Implemented between qubits to introduce the
necessary phases (interference.)
100 0 e SWAP Gate: Reverses the qubit order at the end 1 0 0 O
R ol 1 (1 1 0 01 O
Clv =
001 0 - _
2ir =17 (1 —1) SWAF=10 1 a ®
0 0 0 e?* 0 0 0 1
146 o 1 65 H|p) = H(c|0) + A|1))
: * = a==(0)+ 1)) + (0} 1) FWAP|00) = |00)
HIY) = = [(+ B)/0) + (a— A1) gl
= — |(a o —
V2 SW AP|10) = |01)
|z1) | H [ R s R, W AP|11) = [11)
|2) l HH R R,
|z3) ® l SW AP,
|2, s ° 53




Deutsch Algorithm f:{0,1} - {0,1} g 4 cases:

F(0) = f(1)

Problem / ( ) f(]_) constant
&
&

a black-box function fthat: takes one bit as input (0 or 1), = <

f(

returns single 1 bit output (0 or 1) f 0) — 1

The function can either be: balanced

Be constant: f(0) = f(1) (same output for both inputs), or f(O)
Be balanced: f(0) # f(1) (different outputs for each input).

Classically: must evaluate the function twice to Quantumly: can evaluate the function ONCE
VERSUS
determine if it is balanced or constant — both §(0) & f(1) to determine if it is balanced or constant
Algorithm . Recall:
Together, state is: H|0> 7 (|0> + |1>)
1 First qubit is initialized to |0) or |1) (input qubit) |z) z) ® [y =1)
second qubit is initialized to |1) (work qubit)—— Iy) H|1) = 7 (10) — [1))
2

Apply a Hadamard gate to both qubits} Each qubit is now in a

superposition of 0 and 1 Explained in next slide
= Together, after applying the Hadamard gates to both qubits,

the state Psi becomes a superposition of 4 possible states: |"/’> |00>, |01>, |1O>, |11> < D 54




x € {0,1} 2cases—xisOorl

continued... =T

The quantum State when applying hadamard gate is: H ® H | I y{
\\

if z =0: If & = 1:
HeH(|0)® 1)) H®H(|]1)® 1))
1 1
€i§W(+m®IW|m = —=(0) = 1) ® 7= (10) ~ 1)
1
9) = 3 (100) — [01) +[10) — 11) ¥ =3 (100) = 01) = J10) + {11

— in quantum computing, this ‘

3 Apply oracle (i.e. function f(x) ) — . ... (matrix), notation: ol

This oracle gate applies the function to the first qubit x, but modifies the second qubit based on the result
of the function. This is expressed mathematically as:

Uf|.’E> X |y> — |IL’> X Iy D f(iL')> @ is the XOR (modulo-2 addition)| °°



...continued... Uslz) ® ly) = |z) ® |y @ f(z))

If f(0) =0, f(1) = 0 (Constant Function): If f(0) =0, f(1) = 1 (Balanced Function):
= The second qubit remains unchanged for all states: = The second qubit The second qubit is flipped only when x=1:
U (|00)) = |00) j | Uy(|00)) = |00)
U (]01)) = [01) b U(]01)) = [01)
Us(|10)) = |10) Notice sign flips! Uy(]10)) = [11) (second qubit flipped)
Us(|11)) = |11) (|]11)) = |10) (second qubit flipped)

1
|¢after oracle> = §(|00> - |01 @‘

(for bothx=0and x=1) (for bothx=0and x=1)
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Deutsch-Jozsa’s Algorithm ! Goal of the Deutsch-Jozsa Algorithm is to determine whether a
_ oy given function (that takes an n-bit input) is constant or
Classically 9 +1 balanced. f: {0,1}" — {0,1}

" Inputs to determine,

Quantumly, Constant function: f(z) = f(y) for all z, meaning the output is the same for all inputs.
ONE function evaluation
Balanced function: f(x) outputs 0 for half of the inputs and 1 for the other half.

1. Initialization:

* You start with n qubits initialized to |0)®" (all qubits in |0)). 3. Oracle Uy (The Function Evaluation):
* You also have an extra qubit initialized to |1) (this is the "work qubit"). * The oracle Uy is a quantum gate that "evaluates" the function f(z). Mathematically, it
performs this operation:
0)*" ® [1)

Uslz) ® |y) = |z) ® |y ® f())
This means you have n qubits initialized to |0), plus one extra qubit initialized to |1)
9. Hadsimard Gateeon All Qubits: * Since the work qubit is in a superposition of |0) — |1), applying the oracle transforms the

state into:
e Apply a Hadamard gate to each of the n qubits and the work qubit:

1

"1
H®" @ H|0)®" & [1) T 21O ®%(|o> )
z=0

» After applying the Hadamard gates, the first n qubits are in a superposition of all

possible inputs, and the iast qublt (work qubi) is in a:superposition of [0} — |1}, The + Notice that the value of f(z) only affects the phase of the first qubit state |z). The work

g ; qubit is no longer needed after this step.
resulting state is:

1 33 1
o ; lz) ® ﬁ(lf)) - 1))
57

This superposition state represents all possible inputs for the function f.



continued.... 10) {77

4. Hadamard Gates on First n Qubits:

* Now, apply another set of Hadamard gates to the first n qubit: | 1 ) — H

2"—1

B Y (-1 @)

T i
z=0 ) v

¢ This transforms the state into:

1 2"-1 [2"-1
7 [Z(—l)’”'”f"”)] 2)
z=0 Lz=0

Here, x - z is the bitwise dot product (modulo-2) between the binary representations of x

and z.

5. Measurement:

y

x — gen 7 A

y&x)

T i
) |ws)

e Now, you measure the first n qubits. Two outcomes are possible:

* If f(z) is constant, the measurement will yield |0)®™ with certainty (all zeroes).

« If f(z) is balanced, the result will be anything but |0)®" with high probability. 58



continued...

Constant Function:

Hel (%000) _101) + |10) — |11>))

1/ 1 1
=5 7(|0> +1) ®10) - ﬁ(|0> +1))®1)
1
7(|0> 1)) ®10) - E(IO) —-n)e |1>)
5

first qubit collapses to |0) when measured
HQ® HU; H ® H |zy) %W'f

Deutsch’s Algorithm is a specific case of the
general problem: Deutsch-Jozsa’s Algorithm !

q1)

q2)

HI (%(|00> — [01) + [11) — |10>))

1

2

4 Apply Hadamard again:

1
(%(m +11)®[0)

1
+ ﬁ(“i) - D) ®1)

Balanced Function:

V2

1
()-8 |o>)

L (o) + 1) ® 1)

first qubit collapses to |1) when measured

0) —

H

1} —

H

Uy

H

/f\




Shor’s Factorization Algorithm Problem: given a large composite number N, find its prime factors.

1. reducing the factorization problem to an order-finding problem (Classical)

2. Choose a random numbera s.t1 <a <N (number to be factored)

3. Check if gcd(a, N) # 1 using Euclid's Algorithm

Compute the greatest common divisor (GCD) of 2 numbers

We are interested in periodic behavior of powers of a — GCD is is the largest number that divides both of them
under modulo N arithmetic when  ged(a, N) =1 without leaving a remainder

Order of a number; (order = r), gcd(a, N) = ged(N,a mod N)
is the smallest integer s.t: a" =1 (mod N) If:
"~ ged(a,N) #1 then a and N have a
Example of Order and Periodicity common factor
N=15,a=2 So. r=4 ng(a7N) =1 thenqand N are coprime
9
2! mod 15 =2 because after raising 2 to the power of 4, we get 1. coprime (no common factors other than 1)
22 mod 15 = 4 This means the sequence of powers of 2 mod 15 EX:a—8& N=42 gcd(8,42) = ged(42,8 mod 42).
starts repeating every 4 steps: o
23 mod 15 = 8 pEating erery s Siep 1. 428=5r2 = gcd(8,42) = ged(8,2)
2,4,8,1,2,4,8,1,... 2. 82=410 = ged(8,2) =2
2¢ mod 15 = 16 od15=1 So, no need to proceed further 60
since you’ve found ged: ng(S, 42) = 2




continued... Shor’s algorithm finds this order r using quantum methods (specifically, the

Quantum Fourier Transform) much more efficiently than classical algorithms can.

1. Create a superposition:
this allows the g-computer to simultaneously compute multiple values of _ § | :L'>
a**x mod N

2. Apply a g-circuit that computes: Z |z)|a® mod N) each x is "paired"
a**x mod N for each x in the superposition. \/7 with its
corresponding

3. Apply Quantum Fourier Transform (QFT): a**x mod N
Extract the periodicity (or order r) of the function a**x mod N value, but it is not

known what those

Classically, this would be like performing a Fourier analysis to find the frequency
values are yet

(or periodicity) of a signal,

4. Measure first register:
The result 1s a value k that is related to the order r of « mod N
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Grover’s Search Algorithm to search for a specific item in an unsorted database

list of N items and want to find a specific target. Classic algorithms time
— classically, check N/2 times on avg., worst case N times it takes to solve:

O(N)

1. Initialization: Superposition of All States

N-1

n qubits N = 27 1 } :|$>

Apply Hadamard to each qubit — g-state isnow: /N : O ( vIN )
r=

2. Oracle Query: Marking the Target State
An oracle (black-box function) is used to mark the correct state (the target) by flipping its phase (multiply by -1)

Grover’s Algorithm:

Oracle is implemented as a unitary operation O, which acts as: > {_ lz) if z is the target,
€T) =

3. Grover Diffusion Operator: Amplifying the Target State lz)  if z is not the target

This operator amplifies the probability amplitude of the target state, making it more likely to be measured
This operation reflects the amplitudes about the average amplitude of all states D=2 | ’(,b) < ,¢| T

4. Repeat: Oracle + Diffusion /

62

After each iteration, probability of finding target increases, until it reaches ~1 . _ .
si = equal superposition state



Bernstein Vazirani’s Algorithm /
Goal is to find the hidden bit string s with the

fewest possible queries to the black-box function

Classically,

black-box function f(x)
f(z) =z-s mod 2

in the worst case, a classical algorithm would need to query the black-box function n

times (for each bit of s) to find the hidden string

Quantumly,
just one query to the black-box function using quantum computing

1. Apply a Hadamard Transform to the n-qubit state |Q)®"

2. Applyoracle U; which transforms |z) — (1) |z)

input bit
string

unknown secret

bit string (or
hidden integer)

0) -

H

Uy

0) —

H

/$=.

H

%=

3. Another Hadamard transform is applied to each qubit . . . .
makes it so that for qubits where s i = 1, its state is
ﬂ_—> converted from |-) to |1) and for qubits where s i

= 0, its state is converted from |+) to |o)

Full Algorithm:

. H¥ ! i
= Y = Y (1) @|a) —
2 ze{0,1}" 2 z€{0,1}"

= 3 D) = )

z,y<{0,1}"



Fidelity:

- quantifies the closeness between two quantum states — i.e. how similar two quantum states are to each other
- 1 means the states are identical, while 0 means they are completely different (orthogonal).
- Itis a critical tool in evaluating the accuracy of quantum operations and algorithms.

2

F(&g) — [Ty \fpd\/ﬁ | Ifbothstatesarepurethen...> F(|¢>, |¢>) _ |<,¢|¢>|2
|

Density matrices of
the 2 quantum states
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MPS (Matrix Product States) provides a way to efficiently represent certain quantum states by explo'{ingcorrm and structure in the systenn
In an MPS, the quantum state is represented as a chain of tensors (matrices), each A 1 A 2 A 3 A 4 A 5

corresponding to one site (or qubit), with connections (or bonds) between neighboring | | | | |

S SH S3 Sy Sg

sites.

Mathematical Form: For a one-dimensional chain of N qubits, the state |1) can be written
as:

)= > AM1]A®[2]- - A™[N]ligis. . .iy)

219225« IN

Here, A [k] are matrices corresponding to site k, with 7, representing the local physical
state at that site (e.g., |0) or |1) for a qubit). The dimension of these matrices depends on the
bond dimension x, which controls how well the MPS can approximate complex entanglement.

Real-Space Renormalization Group (RSRG)

to study systems with many degrees of freedom, typically on a lattice, such as spin systems or
condensed matter systems. The method is designed to simplify these complex systems by
systematically reducing the number of degrees of freedom while preserving the essential
physics, such as critical behavior near phase transitions.

Basic Idea:

¢ In RSRG, the system is coarse-grained by reducing the number of lattice sites or degrees

of freedom while retaining an effective description of the system at larger length scales.

e The idea is to progressively reduce the resolution at which the system is observed while

maintaining the correct large-scale behavior, such as fixed points and critical exponents

in phase transitions. M iscel Ianeous

Density Matrix Renormalization Group (DMRG),
which is a highly efficient method for finding ground
states of one-dimensional quantum systems—for solving
quantum many-body problems.

DMRG can be understood in modern terms as a
variational optimization method over Matrix Product
States (MPS)

- one-dimensional chain of particles or spins,
is divided into two parts: the block and its
environment.

- block may represent a small section of the
entire system (perhaps a few sites or
particles). As the algorithm proceeds, the
block is grown iteratively by adding one
site at a time.

- Without truncation, the state space of the
quantum system grows exponentially as
more sites are added to the block— ex: N
sites— then growth is like d**N

- DMRG truncates the number of states it
keeps track of by only retaining the most g5
significant states. This is done by looking at



Key Features:

Miscellaneous 2 , _ S , _ _
¢ Lattice-based model: The model consists of a grid (lattice) of discrete variables called spins

1s a mathematical model of ferromagnetism Each spin can be in one of two states: +1 (up) or —1 (down).

Ising model: o )
statistical mechanics.

¢ Hamiltonian: The energy (Hamiltonian) of the system is given by:
study electron correlations in systems with interacti
electrons. It is one of the simplest models to describe H=-J SiS;i—h Z S;
phenomena such as metal-insulator transitions and (i,5) i
high-temperature superconductivity

Hubbard
model:

Key Features: where:

* Lattice model of interacting electrons: The Hubbard model describes electrons hopping e Jis the interaction strength between neighboring spins S and S’
i s
between neighboring sites of a lattice while interacting with each other when they occupy the ¢

same site. * (i,7) denotes that the sum is over nearest neighbors.

¢ Hamiltonian: The energy (Hamiltonian) for the Hubbard model is:

H=—t Z (CLC]‘U + h.c.) + UZniTnu

(i), i

e his an external magnetic field.

e S; is the spin at site %, which can be =£1.

Phenomena Studied:
where:
* Magnetization: At low temperatures, the spins tend to align, leading to spontaneous

« tisthe hopping term, representing the kinetic energy of electrons hopping between L . X . .
magnetization (ferromagnetism). At high temperatures, thermal fluctuations randomize the

nearest-neighbor sites.
i

i

spins, resulting in no net magnetization (paramagnetism).

* ¢, and ¢;, are the creation and annihilation operators for an electron with spin o (either

« Phase Transition: The Ising model exhibits a second-order phase transition at a critical

up T or down |) at site 4. temperature. For example, in the 2D Ising model, there's a critical temperature T}, below

« U is the on-site interaction energy. It represents the repulsive energy when two which the system has a non-zero magnetization (ordered phase), and above which the
electrons with opposite spins (up and down) occupy the same site. magnetization vanishes (disordered phase).
* m; and n; are the number operators for up-spin and down-spin electrons at site 1. Variations:

¢ 1D Ising Model: Does not show a phase transition at finite temperatures.

¢ 2D Ising Model: Exhibits a well-known phase transition with spontaneous magnetization
below the critical temperature.

« 3D Ising Model: Also exhibits a phase transition, but the exact solution is more difficult than
in 2D. v



Quantum Error Correction

nahhh
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