
TOPICS IN QUANTUM THEORY

Mathematical structures of quantum theory Introduction to quantum information processing and 
quantum algorithms

1. Qubits 
(Bloch sphere, superposition vs mixtures, composite systems and 
subsystems, Bell basis)

2. Qubit gates 
(examples, universality, decoherence)

3. Quantum algorithms 
( Berstein-Vazirani alg., Deutsch-Josza alg., Simon’s problem)

4. Implementation 
(ions, photons, qdots, superconducting qubits, diVincenzo criteria)

5. Quantum key distribution (one-time pad, BB84, E91)

6. Bipartite communication protocols 
(q-teleportation, quantum dense coding, entanglement swapping)

7. Fourier transform and Shor’s factorization algorithm

8. Grover’s search algorithm

9. Shannon Information theory 
(information, entropy, communication capacities)

10. Quantum error correction 
(bit flip error correction, Shor’s 9 qubit correction code)

1. States 
(definition, convexity, boundary, discrimination, Bloch sphere)

2. Effects 
(definition, convexity, Gleason’s theorem, ordering)

3. Observables and Measurements 
(definition, convexity, incompatibility, informational completeness, 
PVM, POVM)

4. Channels
(definition, convexity, Stinespring’s theorem, Choi-Jamiolkowski 
representation,examples)

5. Time evolution 
(Schrodinger’s equation, Lindblad equation, Markovianity)

6. Quantum entanglement
(definition, LOCC ordering, distillation, bound entanglement, 
witnesses, PPT criterion)

7. Multipartite entanglement
(definition, GHZ states, W states, quantum secret sharing)
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Basics.
Qubit: 2-level system Superposition: Linear combination of Basis States

Born Rule:
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(Basis states)

Matrix elements of Operator O :



under the hood…

- Experiments
- interference/wave formalism
- Linear algebra rules, hilbert spaces.
- Group theory
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Basis Representation & Conversion
Quantum State psi can be represented in different bases 
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(Basis states)

Suppose you want to express the same state in a new basis

Change of basis is accomplished by expressing the 
old basis in terms of the new basis: ⇒

So now new coefficients of the state psi in the new basis are:

(In matrix form)

Basis Change for Operators:

Basis Change for States:

Matrix elements in b-basis

Suppose you want to change to a new basis:

Then, old basis can be written in terms of new basis as:

Matrix elements of old Operator O are written in the new basis as:

U is the unitary matrix that transforms between the two basesrow column

In the context of basis changes:
→ columns of the matrix represent the old basis vectors (in this case b_i)
→ rows represent the new basis vectors (in this case c_k)



Re-iterated (Basis 
change)

States

5

Operators

The transformation 
matrix U that connects 

the two bases

So,

Example:

Example:

So in new 
basis:

Transformation:

Same U for both 
examples

in new basis



Summary of basis transformation
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Convexity:
convex set is a set of points such that, for any 
two points within the set, the line connecting 
them is also entirely within/part of the set. 

pick any two points inside the 
shape and draw a straight line 
between them, that line will be 
entirely inside the shape.

a real-number set like the 
interval [0,1], any point between 
0 and 1 (such as 0.5) is also in 
the set. So, the interval [0,1] is 
convex.

A set of quantum states is convex:

⇒ Pure States  >> Surface

⇒ Mixed States  >> Interior

— Any point inside ball is a 
probabilistic mixture of pure states

is a maximally mixed 
state if p0 = p1 = 0.5 .

MIXED STATES &
Density Operators
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In quantum mechanics, convexity for quantum states 
refers to the idea that mixed states can be expressed as a 
convex combination (weighted sum) of pure states. This 
concept is central to the description of mixed states and 
represents how they can be viewed as statistical mixtures 
of different pure states.

Mixed States: Convexity applies to mixed states, which 
represent a system being in different pure states with 
certain probabilities. Mixed states are distinguished from 
pure states, which cannot be decomposed into a convex 
combination.
Pure States: A pure state is an extreme point of the 
convex set of states, meaning that it cannot be 
decomposed further as a mixture of other states.
Convex Set of Quantum States: The set of all valid 
quantum states (density matrices) forms a convex set, 
meaning any convex combination of valid quantum states 
is also a valid quantum state.



Reduced Density Operator & Trace

Consider a bipartite system A and B. The 
state of the system is described by a 
density matrix (either mixed or pure):
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Reduced Density Matrix is obtained by tracing 
out the degrees of freedom of subsystem B 



More on density matrix:
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Hermitian:
(so eigenvalues are 
real numbers)

Normalization:
(probability sums to 1)

For Pure State For Mixed State

Positivity:
(density matrix must be a 
positive semi-definite, so 
probabilities aren’t negative)

Distinguishing pure and mixed:

Pure state: There will always be a basis in which you 
will get measurement outcome being the same 
values (so, 100%)

Mixed state will be always be less than 100% 
because its not 



Formalism Comparison:
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Coherence vs. 
Decoherence.
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Effects. Represents possible outcomes of a quantum measurement

● Each outcome is described by:

● Set of  for all possible outcomes: 
“POVM”

Positive operator-valued Measurement

A “Positive Semi-Definite” Operator

Z-basis (Computational) :

“PVM”
Projection-Valued Measurement

- specific case of a POVM
- operators correspond to orthogonal projectors.
- do not necessarily correspond to the eigenstates of a 

particular observable 
- may be of higher rank (i.e., could project onto 

subspaces rather than single states)

OrthogonalityCompleteness
X-basis (Superposition) :

Y-basis (Superposition + i) :

Useful for state discrimination

“Von Neumann Measurement”

- specific case of a PVM
-  Operators are: rank-1, orthogonal,

that correspond to a specific observable.
- measurement outcomes correspond to the 

eigenstates of the observable being 
measured, and the system collapses to one of 
those eigenstates.
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Effects 2
Projective Measurements (PVM)
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Completeness 
Relation:

Positive Semi- 
Definite 
Operators:

⇒ eigenvalues are non-negative
⇒ ensures the probabilities derived from 
measurement outcomes are non-negative

Positive Operator-Valued Measurements (POVM)
POVMs allow for more general outcomes that do not 
necessarily correspond to eigenstates of observables

Forms a complete set of orthogonal projectors. 
Every possible outcome is accounted for by one of the projectors.

Orthogonality reflects the fact that 
measurement outcomes are mutually 
exclusive in projective measurements

Orthogonality:

● PVMs return eigenvalues of the corresponding observable. When you measure, the system 
is projected onto one of the eigenstates, and the measurement outcome corresponds to that 
eigenstate.

● PVMs represent a special case of measurements where outcomes correspond to projectors 
onto orthogonal eigenstates.

Orthogonality not necessary!

Each POVM element is positive 
semi-definite operator!

Also, 
(Pi )**2 =  (Pi )



Example & Difference of POVM, PVM, Von Neumann
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Gleason’s Theorem
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The probability p of observing the system in a state corresponding to a projection 
operator P (which represents an observable) is given by:

Gleason's Theorem shows that any rule for assigning probabilities to measurement outcomes must follow this form — that is, there is no 
other way to consistently assign probabilities to measurements other than the Born rule using a density matrix to represent quantum states.

When the system is described by a 
density matrix, the probability p of 
measuring a specific outcome associated 
with a projection operator P (associated 
ith the measurement outcome you're 
interested in) is given by:

Trace operation essentially sums over the contributions from each 
possible pure state in the ensemble, weighted by the classical 
probabilities
– shows how each pure state interacts with the measurement operator P

In the case of 
a pure state

!!!!



Observables.

- Observables are Hermitian Operators

Observables = Matrices:

Basis Representation:

⇒ all eigenvalues of the observable are real numbers
(i.e. measurement number must be real)

Measuring observable projects the system

into one the eigenstates with associated eigenvalue 

Eigenvalue Equation!

Ex; 3x3 matrix

- a, f, k are REAL
diagonal elements of a Hermitian matrix must be real
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Gates = Matrices = Operators

Quantum Computing

(Qubits = Vectors = States)

● X-Gate (NOT Gate): Flips the qubit between 0 and 1 state

● Z-Gate (Phase Flip): Adds phase shift (a π - rotation about Z-axis)

● Y-Gate: Applies π- rotation around the Y-axis, combines bit + phase flip

● Hadamard Gate: Creates superpositions from computational basis states 

–i.e converts to +/- basis

● S/T Gates: Apply phase shifts

● CNOT: Entangles qubits
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More on GatesUniversality : Universal Quantum Gate Set General Rotation about any arbitrary axis,

Rotate a qubit state by theta around n-axis,
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Phase Shift 
Gate maps:

rotates the state around the 
Z-axis by an angle phi

Toffoli gate + Hadamard



Example:
Rotation Operations for Spin-½ Systems (Qubits):

Pauli matrices are used as generators of rotations for qubits:
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Example: Pauli matrices are used as generators of rotations for qubits:

Computational Basis

Superposition Basis

Swap operator, S 
and T gates, 
explain CU
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Hadamard + CNOT = entanglement

Initialize:

H

CNOT

Superposition:

Entanglement:
(Bell Basis)

Hadamard + Z  =  Phase Flip Superposition

H = Superposition:

Z
Phase Flip:

Grover's Oracle

Hadamard + Phase (S, T) =  Phase Kickback

Introduces controlled phase shifts between basis 
states (phase rotations .critical for interference)
Used in phase estimation in Shor’s factoring 
algorithm, Quantum Fourier Transform (QFT)...

Examples of Gate 
Combinations to 

know

Hadamard Transform:

21



Mathematics Slide  

Taylor Series:

Differential Equation:
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Incompatibility
Two observables are said to be incompatible if they do not commute

⇒ cannot be measured simultaneously with arbitrary precision

measures the extent to which the two 
operators fail to commute with each other 
(i.e. order of their measuring matters)

Note:
Operators that commute with each other share a common set of 
eigenstates, meaning they can be measured simultaneously.

Heisenberg Uncertainty Principle

Commutes

Does not 
commute

… gives a lower bound on the product of the 
uncertainties (or standard deviations) in measuring two 
observables simultaneously
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Informational Completeness
A set of measurements is informationally complete if it provides enough information to fully reconstruct the quantum state.

Example: 
Projective Measurements on Mutually Unbiased Bases (MUBs)

crucial in quantum state tomography, where multiple measurements on 
different bases can fully determine the quantum state.

For qubits, measurements in three orthogonal bases (z, x, y) to 
provide complete information about the quantum state

for informational completeness, we need to measure 
different observables, often represented by 
incompatible ones

I is identity matrix
Is the bloch vector: 

Pauli Matrices
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CHANNELS Definition: 

A quantum channel models the evolution of a quantum system 
under the influence of noise or interaction with an 

environment

Purpose:  

to understand how a quantum state (represented by a density 
matrix) changes when subjected to this noise or interaction.

Mathematical Definition
A quantum channel is a mathematical map

that takes a density matrix

and transforms it into a new density matrix

Properties: 
1. Completely Positive
2. Trace Preserving

A completely positive, 
trace-preserving map can be 

described as:

Kraus Operators, 
describing specific action of the channel

A quantum channel can be seen as a "pipeline" 
that transfers quantum states (or information) 

from one system to another, while possibly 
subjecting the state to noise, decoherence, or 

interaction with an environment.25



Complete-Positive (CP)
● if it ensures the positivity of density matrices even 

when it acts on part of a larger entangled system

Trace-Preserving (TP)
● ensures that the quantum state remains properly 

normalized after the channel acts on it:

● Positivity Condition:

● Complete Positivity:

If you extend the channel Epsilon to an Identity operation on an 
auxiliary channel system, the output will still preserve positivity.

Auxiliary system

Extended system

● In terms of Kraus operators:

Trace preserving is like 
completeness relation–its so it 

doesn’t “lose probability”26



Types/Examples of Channels
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where p is the probability of a phase flip, I is 
the identity matrix, and Z is the Pauli-Z matrix

The action of the dephasing channel on a density matrix 
ρ is given by:

γ  is the probability of the system losing energy 
(damping rate)

The action of the amplitude damping channel on a 
density matrix ρ is given by:

This channel tends to map excited states to 
ground states over time, leading to energy loss.

The depolarizing channel can be seen as adding 
random noise to a quantum system.

For a qubit, the depolarizing channel acts as:

For a single qubit, he channel can be described 
using the following Kraus operators:State after applied 

channel

Bit-flip 
Channel:

Probability of bit-flip occurring (i.e. error)



Stinespring’s Theorem

I.e. Stinesprings Theorem helps model quantum noise as a 
unitary evolution on a larger system (system + 
environment), followed by tracing out the environment
– i.e. even if we focus on a noisy, open system, we can 
view the overall system (including the environment) as 
undergoing unitary evolution. The noise is a result of our 
lack of access to the environment, and this is 
mathematically modeled by tracing out the environmental 
degrees of freedom.
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Imagine your quantum system as a ship in a sea of waves (the environment). On its own, the ship is rocked and battered by the waves (noise), and its trajectory 
looks complicated. But if you zoom out and consider the whole ocean (the system + environment), the ship’s movement and the waves are part of a larger, 
coherent motion. 
This is what Stinespring’s theorem shows: even noisy processes can be viewed as part of a larger, unitary evolution when you include the environment.

Stinespring’s theorem asserts that every completely 
positive map can be represented as unitary evolution on a 
larger Hilbert space (the system plus environment), 
followed by a partial trace over the environment. This 
result is foundational because it links noisy, potentially 
irreversible quantum evolutions to a deterministic, 
reversible evolution in a larger context.



Shannon Information Theory

For a discrete random variable X, which can take on values
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with corresponding probabilities Shannon’s 
Entropy

Measures the uncertainty or information content of a random variable or a message. 
i.e: quantifies how much "surprise" or "uncertainty" there is in the outcomes of a probabilistic system

● Highly probable ⇒ provides little new information = low entropy
● Highly uncertain ⇒ provides lots of new information = high entropy

Shannon’s entropy gives a way to quantify the "average" amount of information produced by a random process.

PROPERTIES

Maximal Entropy = when all outcomes are equally probable (maximum uncertainty)

is always non-negative because probabilities are between 0 and 1

And minimal 
entropy when 

outcome is certain



continued…. Example: 
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quantum-analogue,

Von Neumann Entropy

Density 
matrix

Measures the mixedness of a quantum state. 
– A pure state has entropy 0
– A mixed state (which represents uncertainty 
about the quantum state) has positive entropy.

Quantum Relative Entropy: measures the 
"distance" between two quantum states

Entanglement entropy: measures the degree of 
entanglement between subsystems of a q- system
For bipartite quantum system, the entanglement entropy 
is the Von Neumann entropy of the reduced density matrix 
of one subsystem. –i.e. how much information you gain 
about one subsystem by observing the other subsystem.

Holevo bound: 
Know that quantum systems can encode classical information, 
and the Holevo bound gives an upper limit on the amount of 
classical information that can be extracted from quantum states

quantum systems, where 
uncertainty arises due to the 
mixedness of quantum states

System is not entangled, and 
subsystem A is in a pure state

System is entangled, meaning that the state of 
subsystem A depends on state of subsystem B 
– larger the entropy, greater the entanglement



Seperable States vs. Product States
Product State:  no entanglement between them.

A product state is a quantum state of a composite system that can be written as a tensor product of the states of individual subsystems.
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Seperable State:  separable states are not entangled

A separable state is a state that is not entangled, but it may not necessarily be a pure product state. It can be written as a convex combination (i.e., 
probabilistic mixture) of product states.

Pure product state

separable states can be classical 
mixtures of more than one product state

Thus, the total density matrix for the system would be:

In this example, iii takes two values, 1 and 2, corresponding to the two possible product states.



Entangled States
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GHZ– 
“bell state in 3 particle entanglement”

Maximally entangled

Bell Basis:

The W state is the representative of one of the two non-biseparable 
classes of three-qubit states, the other being GHZ



PPT Criteria
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Checks for entanglement



Flowchart for Unitary vs Non-Unitary Evolution:

Initial State

Evolution

Unitary Evolution Non - Unitary Evolution

● State evolves according to the Schrödinger equation
● State remains pure, no information is lost.

● State evolves according to the Lindblad equation
● State is affected by environmental interactions (e.g., 

noise), leading to decoherence or loss of quantum 
coherence.
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Choi-Jamiolkowsi Isomporphism

nahh…
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Time Evolution.
● For a closed system, time evolution of the state is governed by Schrödinger's equation:

● For an open system, they evolve according to Lindblad Equation:

Unitary Evolution: 

● Properties: Norm-preserving, deterministic, reversible, no information loss

Non - Unitary Evolution: 

● Properties: Norm is generally not preserved, irreversible, information loss (decoherence)

Lindblad Eqn models 
Markovian noise: the system 

has no memory of past 
interactions.

Lindblad Operators: 
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Continuous vs. Discrete Pt. 1
Continuous spectrum of eigenvalues, 
and set of eigenstates

Example: free particles (not bound in a potential well)

“wavefunction”

“infinite dimensional” matrices & vectors
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Continuous vs. Discrete Pt. 2
Continuous spectrum of eigenvalues, 
and set of eigenstates

Example: free particles (not bound in a potential well)

“wavefunction”

“infinite dimensional” matrices & vectors
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Schrodinger 
Equation:

Time Dependent Time In-Dependent

Continuous

Discrete
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Examples
Example 1: 
Infinite Potential Well (Particle in a Box)

Example 2: 
Quantum Harmonic Oscillator

Example 3: 
Free Particle (Time-Dependent Case)

Example 4: 
Spin-1/2 Particle (Discrete System)

Example 5: 
Quantum Scattering (Barrier Problem)
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APPLICATIONS
(algorithms, implementation etc.)
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Implementation
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No Cloning Theorem
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The no-cloning theorem states that it is impossible to create an exact copy of an arbitrary unknown quantum state.
Why not?
Quantum states can exist in a superposition, meaning they are a combination of 0 and 1.
Attempting to copy a quantum state involves measuring it, but measurement collapses the state into a definite value ( 0 or 1), destroying the superposition.

proof

Suppose there exists a unitary operation U that can copy or perfectly clone this arbitrary quantum state.

Let us have unknown q-state Psi. and starting in initial system’s state as:

Auxiliary Qubit

cloning is to create two identical copies of the 
unknown state

For basis 
states:

For 
Eqn (i)

Eqn. (i)

=

contradiction!



Quantum Key DistributionBB84 A

Randomly selects sequence of qubits 
– some in the Z-basis and others in the X-basis

Example:

B
Randomly chooses to measure each qubit in 
either the Z-basis or X-basis

Example:

Quantum 
Channel

Public
Classical 
Channel

Compare their chosen bases (but not the qubit values), Explained in table:

If Eavesdropper (E) tries to intercept the qubits:
E’s measurements would disturb the system
⇒  Alice and Bob would notice errors when they compare a portion of their raw key.

After measurement, A publicly sends which bases was used to prepare each qubit

Discard the qubits where their bases do not match (qubits 2, 
3, 4, and 5).

Qubits remaining after basis reconciliation form the raw key. raw key:
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E91 47



48One-time Pad



2 party-communication/ information transfer:Bipartite Communication Protocols
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Quantum Teleportation

1. Entangling Qubits

Transmit unknown state from one location to another without physically transferring the particle.

Alice has an additional qubit that she wants to teleport

2 Qubits – 1 sent to Bob, 1 sent to Alice – prepared in a maximally entangled state (Bell State)

Alice performs a Bell-state measurement on her two qubits: 
- qubit she wants to teleport, 
- her qubit in the entangled state

This Projects measurement into one of the Bell States:

Specific Case/Example:

result



Superdense coding: Superdense coding is a quantum 
communication protocol that allows the 
transmission of two classical bits of 
information using only one qubit. It leverages 
the power of quantum entanglement to achieve 
this compression of classical information.
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Alice and Bob share a pair of entangled qubits (in a Bell 
state). Alice can manipulate her qubit to encode two 
classical bits of information, and then send that single 
qubit to Bob. Once Bob receives Alice's qubit, he can 
measure both qubits in the Bell basis and recover the two 
classical bits.



a quantum phenomenon where two particles that have never interacted or shared 
entanglement directly become entangled through an intermediary process.
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Entanglement Swapping
Consider four qubits: A, B, C, and D. Initially, qubits 
A and B are entangled, and qubits C and D are 
entangled, but A and D are not entangled, nor are B 
and C. Entanglement swapping allows us to entangle 
A and D without them ever interacting directly.

Example:

When Charlie performs a Bell state measurement on B and C, he collapses the 
joint state of qubits B and C into one of the four Bell states. For instance, if 
the measurement results in Psi_BC, then the state of A and D will also 
collapse into a Bell state, such as PSi_AD. The outcome depends on the result 
of the Bell measurement, which Charlie communicates to Alice and Bob.

The total state of the system is:



maps a quantum state 

Quantum Fourier Transform
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 to a superposition of states, with each state weighted by a complex coefficient
used to extract periodicity from quantum states,

On n-qubit q-state

x is an integer represented in binary form (example):

for

⇒
General binary 
representation:

example:

 QFT on a 2-qubit state n = 2, x = 1

Final QFT state is:



QFT continued… ● Hadamard Gates: Apply on each qubit to create superpositions.
● Controlled Phase Shifts: Implemented between qubits to introduce the 

necessary phases (interference.)
● SWAP Gate: Reverses the qubit order at the end
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Deutsch Algorithm

a black-box function f that: takes one bit as input (0 or 1),
   returns single 1 bit output (0 or 1)
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Problem

The function can either be:
&

&

constant

balanced

4 cases:

Classically: must evaluate the function twice to 
determine if it is balanced or constant – both &

Quantumly: can evaluate the function ONCE 
to determine if it is balanced or constant VERSUS

Algorithm
Together, state is:

Each qubit is now in a 
superposition of 0 and 1

Recall:

⇒  Together, after applying the Hadamard gates to both qubits,
the state Psi becomes a superposition of 4 possible states:

Explained in next slide

1

2



continued…
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The quantum State when applying hadamard gate is: 

Apply oracle (i.e. function f(x) ) 

2 cases– x is 0 or 1

– in quantum computing, this 
is a Gate (matrix), notation:

This oracle gate applies the function to the first qubit x, but modifies the second qubit based on the result 
of the function. This is expressed mathematically as:

3
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…continued…

⇒ The second qubit remains unchanged for all states: ⇒ The second qubit The second qubit is flipped only when x=1:

Notice sign flips!

(for both x = 0 and x = 1) (for both x = 0 and x = 1)



Deutsch-Jozsa’s Algorithm ! Goal of the Deutsch-Jozsa Algorithm is to determine whether a 
given function (that takes an n-bit input) is constant or 
balanced.
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Classically
, Inputs to determine,

Quantumly, 
ONE function evaluation



continued….
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continued…

59
Deutsch’s Algorithm is a specific case of the 
general problem: Deutsch-Jozsa’s Algorithm !

Apply Hadamard again:

Constant Function: Balanced Function: 

circuit

4

5 5



Problem: given a large composite number N, find its prime factors.Shor’s Factorization Algorithm
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1. reducing the factorization problem to an order-finding problem (Classical)
2. Choose a random number a s.t 1 < a < N (number to be factored)

3. Check if 
Compute the greatest common divisor (GCD) of 2 numbers
– GCD is is the largest number that divides both of them 
without leaving a remainder

coprime (no common factors other than 1)

using Euclid's Algorithm

then a and N have a 
common factor

then a and N are coprime

If:

1. 42/8 = 5 r2    ⇒
2. 8/2 = 4 r0      ⇒

So, no need to proceed further 
since you’ve found gcd:

EX: a = 8 & N = 42

Order of a number, (order = r), 
 is the smallest integer s.t:

We are interested in periodic behavior of powers of a 
under modulo N arithmetic when

Example of Order and Periodicity

N = 15 , a = 2 So, r = 4
because after raising 2 to the power of 4, we get 1. 
This means the sequence of powers of 2 mod 15 
starts repeating every 4 steps:



continued… Shor’s algorithm finds this order r using quantum methods (specifically, the 
Quantum Fourier Transform) much more efficiently than classical algorithms can.
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1. Create a superposition: 
this allows the q-computer to simultaneously compute multiple values of 
a**x mod N

2. Apply a q-circuit that computes: 
a**x mod N for each x in the superposition.

each x is "paired" 
with its 

corresponding 
a**x mod N 

value, but it is not 
known what those 

values are yet 

3. Apply Quantum Fourier Transform (QFT):
Extract the periodicity (or order r) of the function a**x mod N 
Classically,  this would be like performing a Fourier analysis to find the frequency 
(or periodicity) of a signal,

4. Measure first register:
The result is a value k that is related to the order r of a mod  N 



to search for a specific item in an unsorted databaseGrover’s Search Algorithm
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list of N items and want to find a specific target.
→ classically, check N/2 times on avg., worst case N times

Classic algorithms time 
it takes to solve:

Grover’s Algorithm:
1. Initialization: Superposition of All States

2. Oracle Query: Marking the Target State

3. Grover Diffusion Operator: Amplifying the Target State

4. Repeat: Oracle + Diffusion

n qubits
Apply Hadamard to each qubit → q-state is now:

An oracle (black-box function) is used to mark the correct state (the target) by flipping its phase (multiply by -1)
Oracle is implemented as a unitary operation O, which acts as:

This operator amplifies the probability amplitude of the target state, making it more likely to be measured
This operation reflects the amplitudes about the average amplitude of all states

Psi = equal superposition stateAfter each iteration, probability of finding target increases, until it reaches ~1



Bernstein Vazirani’s Algorithm

Classically, 
in the worst case, a classical algorithm would need to query the black-box function n 
times (for each bit of s) to find the hidden string
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unknown secret 
bit string (or 

hidden integer)

input bit 
string

Goal is to find the hidden bit string s with the 
fewest possible queries to the black-box function

Quantumly, 
just one query to the black-box function using quantum computing

1. Apply a Hadamard Transform to the n-qubit state
2. Apply oracle          which transforms
3. Another Hadamard transform is applied to each qubit

makes it so that for qubits where s_i = 1, its state is 
converted from        to       and for qubits where s_i 
= 0, its state is converted from        to Full Algorithm:



Fidelity:
- quantifies the closeness between two quantum states – i.e. how similar two quantum states are to each other
- 1 means the states are identical, while 0 means they are completely different (orthogonal).
- It is a critical tool in evaluating the accuracy of quantum operations and algorithms.
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Density matrices of 
the 2 quantum states

If both states are pure then…



65

MPS (Matrix Product States) provides a way to efficiently represent certain quantum states by exploiting correlations and structure in the system.

Density Matrix Renormalization Group (DMRG), 
which is a highly efficient method for finding ground 
states of one-dimensional quantum systems–for solving 
quantum many-body problems.
DMRG can be understood in modern terms as a 
variational optimization method over Matrix Product 
States (MPS)

- one-dimensional chain of particles or spins, 
is divided into two parts: the block and its 
environment.

-  block may represent a small section of the 
entire system (perhaps a few sites or 
particles). As the algorithm proceeds, the 
block is grown iteratively by adding one 
site at a time.

- Without truncation, the state space of the 
quantum system grows exponentially as 
more sites are added to the block– ex: N 
sites– then growth is like d**N

- DMRG truncates the number of states it 
keeps track of by only retaining the most 
significant states. This is done by looking at 
the reduced density matrix of the block.

- eigenvalues of the reduced density matrix 
give a measure of the importance of the 
different quantum states (basis vectors) in 
describing the system. States associated 
with larger eigenvalues contribute more to 
the overall wavefunction

Real-Space Renormalization Group (RSRG)
 to study systems with many degrees of freedom, typically on a lattice, such as spin systems or 
condensed matter systems. The method is designed to simplify these complex systems by 
systematically reducing the number of degrees of freedom while preserving the essential 
physics, such as critical behavior near phase transitions.

Miscellaneous



study electron correlations in systems with interacting 
electrons. It is one of the simplest models to describe 
phenomena such as metal-insulator transitions and 
high-temperature superconductivity

Miscellaneous 2

Ising model:
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is a mathematical model of ferromagnetism in 
statistical mechanics.

Hubbard 
model:



Quantum Error Correction

nahhh
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