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ABSTRACT

In this thesis proposal we examine non-gradient optimization methods and how they apply
and improve the class of hybrid quantum-classical algorithms known as Variational Quan-
tum Algorithms, in which we divert particular attention to the specific subclass of these

algorithms known as variational quantum eigensolvers. We will use such optimization methods
like the particle swarm optimization (PSO) method and analyze how they improve on what
the VQE is attempting to do – search for the lowest eigenvalue of a complex chemical-system.
Furthermore, we introduce a new optimization algorithm that is physics-based and resolves the
issues of explosions and parameter-sensitive tuning that exists in the PSO method. We apply
these optimization methods to a set of standard optimization test functions and compare them
to other non-gradient optimization algorithms. We discover that our algorithm performs much
better on test functions and therefore have reason to apply it to more complex systems. Therefore,
we then proceed to apply our newly-invented algorithm to quantum circuits. We begin by applying
it to the hydrogen Hamiltonian but continue to more complex Hamiltonian’s, such as Lithium
Hydrite, that are yet to be intricately studied in the field.
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1
FUNDAMENTALS OF LINEAR ALGEBRA AND QUANTUM MECHANICS

L inear Algebra is the language of Quantum Mechanics. It is a description of the trans-

formation of space–which is our current best model of how nature works at the most

fundamental level. Operators, which represent quantities like momentum, position, and

energy, are represented by matrices, which act on the state of a particle represented as a vector.

This action can be abstractly visualized as the transformation of a space (bending, rotating

etc.). The result, as dictated by quantum theory, is that the vector representing the state of the

particle gets scalarly multiplied by discrete numbers. This is represented in what is called the

eigenvalue-equation, in which the discrete scalar numbers are known as eigenvalues. Practically,

when scientists measure a quantity like energy, the results of these measurements are the

eigenvalues–implying that quantities in nature take on only discrete, not continuous, values. For

example, in the Hydrogen atom, the energy levels are specified by a principle quantum number

in the equation:

(1.1) En =− mee4

8h2ϵ2
0

1
n2 =−13.6eV

n2 , for n = 1,2,3, . . .

where:

• me is the electron mass,

• e is the elementary charge,

• h is Planck’s constant,

• ϵ0 is the permittivity of free space,

• n is the principal quantum number which takes on positive integer values.
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CHAPTER 1. FUNDAMENTALS OF LINEAR ALGEBRA AND QUANTUM MECHANICS

The ground state of Hydrogen has an energy of -13.6 electron-volts. That is, if you want to tear

the electron off of the Hydrogen atom (a process known as ionization), you need to supply at least

13.6 eV of energy. This amount of energy is necessary to enable the electron to escape to very large

distances away from the proton. Higher energy levels are less tightly bound, meaning it takes

less energy to ionize the atom and free the electron. Additionally, these energy levels get closer

and closer together as they increase. We say that: "the allowed energy levels are quantized"–from

which the name quanta (plural for quantum) arises. An explicit definition of quantum is that

a quantum is a discrete quantity of energy proportional in magnitude to the frequency of the

radiation it represents, and it is the minimum amount of any physical entity involved in an

interaction. And hence, the study of these discrete energies is Quantum Mechanics. This thesis

focuses on determining the ground state energy of various molecules (a process that can be

extended to other systems) through an optimization process via quantum computation.

1.1 Fundamentals of Linear Algebra

1.1.1 Vector Space and Hilbert Space
A vector space is an assembly of entities known as vectors that can undergo addition and scalar

multiplication to form new vectors within the same vector space [1]. When the scalars are complex

numbers, the space is termed a "complex vector space". The principles governing addition and

scalar multiplication adhere to certain axioms, which create and structure the vector space.

Below are the axioms necessary for a set V to be termed a vector space for all elements

u,v,w ∈V and all scalars a,b ∈ F, where F is the field over which V is defined (commonly R or C):

1. Associativity of Addition: u+ (v+w)= (u+v)+w.

2. Commutativity of Addition: u+v= v+u.

3. Identity Element of Addition: There exists an element 0 ∈V , called the zero vector, such

that u+0=u for all u ∈V .

4. Inverse Elements of Addition: For every u ∈ V , there exists an element −u ∈ V such

that u+ (−u)= 0.

5. Associativity of Scalar Multiplication: a(bu)= (ab)u.

6. Identity Element of Scalar Multiplication: 1u=u, where 1 is the multiplicative identity

in F.

7. Distributivity of Scalar Multiplication with respect to Field (Scalar) Addition:
(a+b)u= au+bu.

2



1.1. FUNDAMENTALS OF LINEAR ALGEBRA

8. Distributivity of Scalar Multiplication with respect to Vector Addition: a(u+v)=
au+av.

The vector space dimensionality states the size of the vector space. it is the number of vectors

(in any basis) for that space, which is the same as the maximum number of linearly independent

vectors it can contain. By linear independence, it is meant that no vector in the set can be written

as a linear combination of the other vectors in the set.

Euclidean Space:
Take the three-dimensional Euclidean space, denoted as R3, as an example. All possible

vectors are of the form v= (x, y, z) where x, y, z ∈R. Consider the following vectors:

v1 = (1,0,0), v2 = (0,1,0), v3 = (0,0,1).

These vectors are linearly independent because there are no scalars a,b, c (other than a = b =
c = 0) that can satisfy the equation:

av1 +bv2 + cv3 = 0,

where 0= (0,0,0) is the zero vector in R3.

The set {v1,v2,v3} also spans the entire vector space of R3 because any vector v= (x, y, z) can

be expressed as a linear combination of v1,v2,v3:

v= xv1 + yv2 + zv3.

Since these vectors satisfy two conditions— linear independence and spanning the vector

space—these vectors form a basis for R3. Consequently, the dimensionality of the vector space is

the number of vectors in the basis, which is three in this case.

Hilbert Space
The Hilbert space is the space under discussion in quantum theory. The Hilbert space is a specific

linear complex vector space which satisfies the following axioms [6]:

1. It has an inner product operation, denoted as 〈u|v〉 ∈ C, which in turn satisfies a few

conditions:

(a) Conjugate symmetry: 〈u|v〉 = 〈v|u〉∗, where ∗ stands for complex conjugate operation.

(b) Linearity with respect to another vector: 〈u|av+bw〉 = a〈u|v〉+b〈u|w〉
(c) Anti-linearity with respect to first vector: 〈au+bv|w〉 = a∗〈u|w〉+b∗〈v|w〉
(d) Positive definiteness: 〈u|u〉 = |u|2 ≥ 0

3
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An inner product of a vector is always positive and only zero when the vector itself is a zero

vector. Here | · | denotes the Euclidean norm or the length of the vector.

2. The Hilbert space is complete with respect to its norm–meaning that there are no gaps

in the sequence of its elements. That is, for a given sequence in which two elements get

arbitrarily close as we move further down the sequence, lim
m,n→∞ |um −un| = 0, every Cauchy

sequence converges to an element φ in the Hilbert space, lim
n→∞ |φ−un| = 0.

"Complete" refers to the property that every Cauchy sequence in the space converges to a

limit that is also within the space. A Cauchy sequence is a sequence whose elements become

arbitrarily close to each other as the sequence progresses. That is, for any small distance,

there is a point in the sequence after which all subsequent elements of the sequence are

within that distance of each other. This concept defines what it means for elements of the

sequence to be getting closer together without referencing a specific limit. The completeness

idea is an important concept because, in a complete space, it is guaranteed that these

Cauchy sequences have a limit in the same space. This is not a trivial property as there are

spaces that are not complete (where you can have Cauchy sequences that do not converge

within the space) which means that the space has "holes" or is missing points.

1.1.2 Operators, Eigenvectors and Eigenvalues
Operators and Hermicity
Linear operators are mappings that preserve vector space operations, while eigenvectors and

eigenvalues emerge from the action of operators applied on vectors. "Mapping" means transform-

ing elements of one space into elements of another space. Since quantum mechanics is linear

in nature, the subject deals with linear mappings. A map A : V → U is linear if it satisfies the

following property for all u,v ∈V and scalars a,b:

(1.2) A(au+bv)= aAu+bAv.

Operators in quantum mechanics are represented by mathematical quantities known as

matrices [9]. Moreover, another requirement for operators in quantum mechanics is the hermitian

property.

An operator Â is said to be Hermitian if it satisfies:

(1.3) Â= Â†,

in which the dagger symbol (†) is the "adjoint" or "conjugate transpose" of the operator [20]. This

condition ensures that the eigenvalues are real and the eigenstates are orthogonal to each other

(the latter term can be thought of as being "perpendicular in higher dimensions").

Lastly, a unitary condition must be satisfied. An operator U is unitary if:

(1.4) UU† =U†U= I,

4



1.2. FUNDAMENTALS OF QUANTUM MECHANICS

where I is the identity matrix–a square matrix with values of 1 along the diagonal and zero

everywhere else. Unitary operators have orthogonal eigenvectors, though their eigenvalues may

be complex. An operator whose inverse is its self-adjoint is a unitary operator.

Eigenvectors
An eigenvector, u, is a vector that changes in magnitude by being multiplied by a scalar factor,

λ, after being transformed by some given square matrix A. The scalar value λ is known as an

eigenvalue. Only if the eigenvalue is negative does the direction of the vector become reversed.

By definition, eigenvectors are never zero.

This description above is describing what is called the eigenvalue equation and it is mathe-

matically stated as:

(1.5) Au=λu.

The eigenvalues of matrix A can be determined by solving the "characteristic equation" which

is given by:

(1.6) (A−λI)u= 0,

and is solved by finding the determinant which must equal to zero.

(1.7) ⇒ det(A−λI)= 0,

where I is the identity matrix. The eigenvectors of the matrix correspond to the non-zero solutions

of the equation derived from the above eigenvalue equation. In quantum mechanics, these

eigenvectors are the possible states of the system, with their associated eigenvalues being the

possible measured values obtained from experiments. This concept will be elaborated in the next

section.

1.2 Fundamentals of Quantum Mechanics

Postulates of Quantum mechanics
The following are the general set of axioms that formulate Quantum Mechanics along with an

explanation of the axiom:

1. The state of a physical system is represented by a ket |ψ〉 in the state space, where |ψ〉 is a

vector in the vector space (state space).

One of the founders of quantum theory, theoretical physicist Paul Dirac (1902 – 1984),

invented a common and convenient notation for representing quantum states called Dirac

notation (also called Bra-ket notation) [7]. A "ket" is symbolized as |ψ〉 and represents a

vector. A “bra” is a linear functional that maps each vector in a Hilbert space to a complex

5



CHAPTER 1. FUNDAMENTALS OF LINEAR ALGEBRA AND QUANTUM MECHANICS

number and is represented as 〈φ|. When a “bra” 〈φ| is multiplied by a “ket” |ψ〉, they produce

a scalar number. A mathematical example is provided below:

Considering a quantum state |ψ〉 represented as a column vector with complex entries c1

and c2. The corresponding bra 〈φ| will be a row vector containing the complex conjugates of

these entries, denoted as c∗1 and c∗2 . The inner product (bra-ket) is then:

〈φ|ψ〉 =
(
c∗1 c∗2

)(
c1

c2

)
= c∗1 c1 + c∗2 c2

2. Any observable characteristic of a physical system is described by an operator Â, and the

outcome of measuring the observable is one of the operator’s eigenvalues, λ.

Observables in quantum physics manifest as linear operators on a Hilbert space that

represent the vector space of quantum states [2]. The eigenvalues of observables are real

numbers that correspond to the possible values of the dynamical variable represented by

the observable. In other words, observables in quantum mechanics assign real numbers

to the results of specific measurements, corresponding to the operator’s eigenvalue with

respect to the system’s measured quantum state.

A key distinction between classical and quantum mechanical observables is that, in quan-

tum mechanics, observables cannot always be measured simultaneously. This property is

known as complementarity. This is mathematically expressed by the non-commutativity

property of the corresponding operators, meaning that the commutator of two operators Â

and B̂ is non-zero:

(1.8) [Â, B̂] := ÂB̂− B̂Â ̸= 0̂

This inequality expresses how measurement results are affected by the order in which

observables Â and B̂ are measured. Incompatible observables correspond to non-commuting

operators. A complete set of common eigenstates cannot exist for incompatible observables.

3. Upon measurement of an observable Â, the only possible outcomes are the eigenvalues

of the observable. Since we can perceive only real values, the eigenvalues should be real,

which is a defining characteristic of a Hermitian operator. The Hermitian operators form

an orthonormal basis, as it is a property of theirs that their eigenstates are orthogonal to

each other and span the entire state space, forming an orthonormal basis.

4. When an observable Â is measured on a quantum state |ψ〉, the probability of observing an

eigenvalue an is given by Born’s rule:

(1.9) Prob(an)= |〈〈an|ψ〉〉 |2

6



1.2. FUNDAMENTALS OF QUANTUM MECHANICS

This scalar product results in a scalar quantity, which represents the probability amplitude

when the states are the same or a transition amplitude between different states.

One of the key phenomena in quantum mechanics is the principle of superposition. This

principle states that a quantum state may reside in any linear combination of different

and distinct eigenstates/basis-states. This principle also reflects the probabilistic nature of

quantum mechanics.

Expressing a quantum state |ψ〉 as a linear combination (i.e. sum) of basis states |φi〉, we

write:

(1.10) ψ=∑
i

ciφi = c1φ1 + c2φ2 +·· ·+ cnφn

where each coefficient ci signifies the probability amplitude associated with the state |φi〉
within the superposition, encapsulating the state’s probabilistic nature. Specifically, the

probability is calculated via the Born Rule–that is, the probability Pi of finding the system

in the state φi is given by:

(1.11) Pi = |ci|2

where |ci|2 is the modulus squared of the complex amplitude ci.

5. If the measurement leads to an eigenvalue an, the quantum state |ψ〉 collapses to the

corresponding eigenstate |an〉.

6. The time evolution of a quantum state is given by:

(1.12) |ψ(t)〉 = Û(t,t0)|ψ(t0)〉

where Û is a unitary operator [5]. This evolution conserves the probability distribution over

time due to the unitarity of Û.

Hamiltonian Operator
The Hamiltonian is a quantity that can be measured and hence it is described as an operator

in quantum mechanics [26]. It corresponds to the total energy of the system which is equal

to the sum of two other energy quantities: kinetic energy and potential energy (both are also

represented as operators). Based on the eigenvalue equation, the eigenvalues corresponding to

the Hamiltonian are therefore the allowed energy levels of the system.

Displayed below is the energy eigenvalue equation where |e i〉 and e i represent the eigenstate

and eigenvalues of the Hamiltonian, respectively:

(1.13) H|e i〉 = e i|e i〉

7
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1.3 Fundamentals of Quantum Computation

Qubits and Computational Basis
A qubit, or quantum bit, serves as the quantum analog of the classical bit used in information

processing [3]. However, contrary to a classical bit that is restricted to binary values of either 0

or 1, a qubit exists as any coherent superposition of the basis quantum states |0〉 and |1〉. These

foundational states |0〉 and |1〉 establish a complete orthonormal basis for the two-dimensional

quantum state space, and together are frequently referred to as the "computational basis". A

qubit’s general state is expressed as:

(1.14) |ψ〉 =α |0〉+β |1〉 ,

where α and β are complex coefficients encoding the probability amplitudes. For the state to

be physically realizable, it must be normalized, enforcing the sum of the probability to equal

1 (i.e. |α|2 +|β|2 = 1). Based on the principles of quantum mechanics, upon measurement, the

qubit collapses to either one of the eigenstates |0〉 or |1〉 with respective probabilities |α|2 and

|β|2. Since it has been stated that quantum states are represented as vectors, the computational

basis is therefore presented (in matrix notation) as the following vectors:

(1.15) |0〉 =
(
1

0

)
, |1〉 =

(
0

1

)
.

Bloch Sphere: A Representation of Quantum States (Qubits)
An excellent visual scheme developed for quantum computing is the concept of a Bloch Sphere,

named in honor of physicist Felix Bloch, which is presented in Figures 1.1 and 1.2.

Figure 1.1
Figure 1.2

Quantum states of a single qubit can be depicted within this three-dimensional Bloch sphere.

States contained within this sphere are termed Bloch vectors (or Bloch states). More specifically,

8
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a single qubit pure state are states that exist on the surface of this sphere, and are described

mathematically as the superposition state |ψ〉 =α |0〉+β |1〉, where α and β are complex numbers

that span two dimensions. (These coefficients are subject to the normalization condition, where

the sum of the probabilities must equal one). A vector that does not lie on the surface of the

sphere but rather exists inside it is referred to as a mixed state.

The general form of a qubit state on the Bloch Sphere is:

(1.16) |ψ〉 = eiγ
(
cos

(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉

)
where θ and φ are real numbers representing the polar and azimuthal angles, respectively,

defining the orientation of the Bloch vector. Since the global phase factor eiγ does not affect

measurements, it can be omitted in most cases, simplifying the state to:

(1.17) |ψ〉 = cos
(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉

The computational basis states |0〉 and |1〉 correspond to the north and south poles of the

Bloch Sphere, respectively. The state |ψ〉 is a point on the surface of the sphere, with the angle θ

measured from the positive z-axis and the angle φ from the positive x-axis.

1.3.1 Quantum Gates
In quantum computing, quantum logic gates are operations that act on qubits thereby transform-

ing the quantum states [15]. Since they are quantum operators, they are therefore represented

as matrices and hold all the properties of traditional quantum operators (unitary and whose

inverses are self-adjoint (Hemitian)). The action that these quantum logic gates do is some

rotation operation.

Single Qubit Gates
Among the most commonly used single qubit gates are the Pauli gates: X (or σx), Y (or σy), and

Z (or σz). These gates are represented in matrix form as follows:

X =
(
0 1

1 0

)
, Y =

(
0 −i

i 0

)
, Z =

(
1 0

0 −1

)
.(1.18)

It should be noted that the Pauli matrices do not commute, and their square yields the identity

matrix, σ2
i = I, for i = x, y, z.

Another fundamental single qubit gate is the Hadamard gate (H), which transforms the

computational basis states |0〉 and |1〉 into superposition states:

H = 1p
2

(
1 1

1 −1

)
, H |0〉 = |+〉 , H |1〉 = |−〉 .(1.19)

9
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In Dirac notation, the action of these gates on the computational basis states is given by:

X |0〉 = |1〉 , X |1〉 = |0〉 ,

Y |0〉 = i |1〉 , Y |1〉 =−i |0〉 ,

Z |0〉 = |0〉 , Z |1〉 =−|1〉 ,

H |0〉 = |0〉+ |1〉p
2

, H |1〉 = |0〉− |1〉p
2

.

Parameter-Dependent Gates
Rotation gates, which depend on angle-parameters, are also crucial in quantum computing. These

gates, denoted by Rx(θ), Ry(θ), and Rz(φ), rotate the state vector on their Bloch sphere about the

respective axes:

Rx(θ)=
(

cos(θ/2) −isin(θ/2)

−isin(θ/2) cos(θ/2)

)
,(1.20)

Ry(θ)=
(
cos(θ/2) −sin(θ/2)

sin(θ/2) cos(θ/2)

)
,(1.21)

Rz(φ)=
(
e−iφ/2 0

0 eiφ/2

)
.(1.22)

For a parameter-dependent gate such as a rotation around the Z-axis, denoted by Rz(φ), the

action we have is:

Rz(φ) |0〉 = e−iφ/2 |0〉 ,

Rz(φ) |1〉 = eiφ/2 |1〉 .

Multiple Qubit Gates
Multi-qubit gates, such as CNOT, CZ, and the SWAP gate, are operations that affect composite

quantum systems:

10
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CNOT=


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 ,(1.23)

CZ=


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 ,(1.24)

SWAP=


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 .(1.25)

The CNOT gate acts as a conditional NOT, with the first qubit as the control and the second

qubit as the target. The CZ gate adds a phase shift to the target qubit conditionally, and the

SWAP gate exchanges the states of two qubits.

With this foundational knowledge of qubits and quantum gates, we can proceed to explore

variational algorithms and their application in quantum computing. Before doing so however,

two concepts crucial to quantum theory will be briefly described. These are Basis Transformation

and Entanglement.

1.3.2 Change of Basis (or Basis Transformation)
One critical and fundamental aspect found in many quantum mechanics problems and a crucial

process in performing quantum computational operations, is the idea of changing basis. A vector

can be described in various ways, depending on the description of the space–that is, the basis

that is relative to the vector-space under consideration. Hence, a vector may be characterized by

an alternate set of basis vectors.

To elaborate, the mathematical explanation of changing basis in Dirac notation is represented

below.

Vectors can be transformed from one basis to another via:

(1.26) |ψ′〉 =U |ψ〉 ,

where |ψ′〉 is the vector in the new basis and U is the unitary operator that transforms the vector

from the original basis to the new basis.

Operators in the original basis can be transformed to the new basis using the same unitary

transformation:

(1.27) O′ =UOU†,

11
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where O is the operator in the original basis, and O′ is the operator in the new basis.

For instance, some common operators transform as follows when changing basis:

In the standard basis: X =
(
0 1

1 0

)
, Y =

(
0 −i

i 0

)
, Z =

(
1 0

0 −1

)
,

Transformed by U : X ′ =U XU†, Y ′ =UYU†, Z′ =UZU†,

These transformed operators X ′, Y ′, and Z′ represent the Pauli matrices in the basis defined

by the eigenvectors of X operator.

The basis transformation of vectors and the corresponding transformation of operators can be

seen with this example:

In the standard basis: |0〉 =
(
1

0

)
, |1〉 =

(
0

1

)
,

Unitary transformation (Hadamard gate): H = 1p
2

(
1 1

1 −1

)
,

In the eigenbasis of X :

|+〉 = H |0〉 = 1p
2

(
1 1

1 −1

)(
1

0

)
= 1p

2

(
1

1

)
= 1p

2
(|0〉+ |1〉)

|−〉 = H |1〉 = 1p
2

(
1 1

1 −1

)(
0

1

)
= 1p

2

(
1

−1

)
= 1p

2
(|0〉− |1〉)

From the above, the Hadamard gate H is the unitary operator that maps the standard basis

to the eigenbasis of the Pauli X operator. Applying H to |0〉 and |1〉 yields the states |+〉 and |−〉
respectively. These resulting states are, in fact, superposition states.

The entire procedure is described below using the Pauli-X operator as an example:

Given a vector |ψ〉 in the computational basis {|0〉 , |1〉}, the change of basis to the eigenba-

sis of the Pauli X operator {|+〉 , |−〉} is performed through the unitary transformation U that

diagonalizes the Pauli X operator.

1. Define the computational basis:

|0〉 =
(
1

0

)
, |1〉 =

(
0

1

)
.

2. Define the eigenbasis of the Pauli X operator:

|+〉 = 1p
2

(|0〉+ |1〉), |−〉 = 1p
2

(|0〉− |1〉).

12
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3. Construct the unitary transformation matrix U using the eigenvectors |+〉 and |−〉:

U =
(
〈0|+〉 〈0|−〉
〈1|+〉 〈1|−〉

)
= 1p

2

(
1 1

1 −1

)
.

The resulting matrix is the Hadamard matrix H.

4. Express a general vector |ψ〉 = a |0〉+b |1〉 in the new basis using the transformation matrix

U :

|ψ′〉 =U |ψ〉 = 1p
2

(
1 1

1 −1

)(
a

b

)
= 1p

2

(
a+b

a−b

)
.

5. The vector |ψ′〉 in the eigenbasis of the Pauli X operator is thus given by:

|ψ′〉 = a+bp
2

|+〉+ a−bp
2

|−〉 .

Now that it has been shown how to transform a vector from one basis to another, let us

consider the explicit transformation for the Pauli X operator as an example of transforming

operators from one basis to another:

(1.28) X ′ = HX H†,

where H is the Hadamard transform that switches between the computational basis and the

{|+〉 , |−〉} basis.

The computation of this transformed operator can be expanded from (1.28) as follows:

X ′ =
(
〈+|
〈−|

)
X

(
|+〉 |−〉

)
Continuing to focus specifically on the Pauli-X operator as the example, we further expand

the calculation of the transformed Pauli-X operator:

X ′ =
(
〈+|X |+〉 〈+|X |−〉
〈−|X |+〉 〈−|X |−〉

)

Recall that the Pauli-X operator is X =
(
0 1

1 0

)
, we can calculate each matrix element of the

above equation as:

〈+|X |+〉 = 〈+|
(
0 1

1 0

)
|+〉 = 〈+|0〉〈1|+〉+〈+|1〉〈0|+〉 = 1

2
(1+1)= 1

〈+|X |−〉 = 〈+|
(
0 1

1 0

)
|−〉 = 〈+|0〉〈1|−〉+〈+|1〉〈0|−〉 = 1

2
(1−1)= 0

13
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〈−|X |+〉 = 〈−|
(
0 1

1 0

)
|+〉 = 〈−|0〉〈1|+〉+〈−|1〉〈0|+〉 = 1

2
(1−1)= 0

〈−|X |−〉 = 〈−|
(
0 1

1 0

)
|−〉 = 〈−|0〉〈1|−〉+〈−|1〉〈0|−〉 = 1

2
(1+1)= 1

Thus,

X ′ =
(
1 0

0 1

)
This example succinctly encapsulates the transition of operators across different bases, a

concept that is vital in the analysis and manipulation of quantum systems.

1.3.3 Entanglement
Quantum entanglement is a remarkable quantum mechanical phenomenon where the quantum

states of two or more particles become interlinked so that the state of each particle cannot be

described independently of the state of the others, even when the particles are separated by

extremely large distances.

A quantum state of a multi-partite system (i.e. a composite quantum system consisting of

multiple, distinguishable subsystems, with each subsystem considered as a quantum system in

its own right, with its own Hilbert space) is said to be separable if it can be factored into a product

of states of its individual subsystems. If a state is not separable, it is considered to be entangled.

Consider two parties, Alice and Bob, who possess parts of a bipartite system described by the

state |ψAB〉. This state is separable if it can be written as (a product state):

(1.29) |ψAB〉 = |φA〉⊗ |χB〉 .

If such a decomposition into a product of individual states is not possible, we say that the

state is entangled:

(1.30) |ψAB〉 ̸= |φA〉⊗ |χB〉 .

The prototypical example of an entangled state is the Bell state, which cannot be factored into

a product of individual states of subsystems A and B:

(1.31)
1p
2

(|0A〉 |0B〉+ |1A〉 |1B〉) ̸= |φA〉⊗ |χB〉 .

Methods by which one can determine whether the state is entangled or not relate closer to

quantum information theory and will not be further discussed here.
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VARIATIONAL QUANTUM EIGENSOLVER

Variational Quantum Eigensolver (VQE) is a hybrid quantum-classical algorithm designed

to find approximations to the ground state (lowest) energy of a quantum system. The

basis of this method lies in the Variational principle:

Given a Hamiltonian Ĥ of a system, the true ground state energy E0 is the lowest

possible energy eigenvalue. The variational principle states that for any trial wavefunction ψtrial

that is normalized (i.e., 〈ψtrial|ψtrial〉 = 1), the expectation value of the Hamiltonian with respect

to this trial wavefunction will be greater than or equal to the true ground state energy:

E0 ≤ 〈ψtrial|Ĥ|ψtrial〉
As an overview, the procedure of this method involves choosing a "trial wavefunction"

depending on one or more parameters, and finding the values of these parameters for which the

expectation value of the Hamiltonian operator (representing energy) is the lowest possible [14].

The wavefunction obtained by fixing the parameters to such values is then an approximation

to the ground state wavefunction, and the expectation value of the Hamiltonian in that state

is an upper bound to the ground state energy. In other words, the VQE operates by preparing

a parameterized quantum state on a quantum computer, measuring the expectation value of

the Hamiltonian, and then through the use of a classical optimization algorithm it adjusts the

parameters iteratively to minimize the attained expectation value.

2.1 Variational Quantum Eigensolver

The Variational Quantum Eigensolver (VQE) algorithm falls under the umbrella of Variational

Quantum Algorithms (VQA)–which are based on the variational method of quantum mechanics
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described above. This class of quantum algorithms, first introduced in 2013 by Alberto Peruzzo,

Alán Aspuru-Guzik and Jeremy O’Brien [17], offers a promising outlook for the use of quantum

computers in the near-term NISQ era (noisy-intermediate quantum algorithms era) as they are

hybrid algorithms meaning that such algorithms use both classical computers and quantum

computers to achieve the goal in finding the optimal solution (i.e. the global maximum or

minimum) to a problem. In the specific case of the VQE algorithm, this optimal solution is the

ground state energy of a given physical system – the minimum quantity of energy that can be

available in that system.

2.2 The General VQE Pipeline

The general VQE outline is as follows: given an ansatz–that is, a "guess" of an initial trial function

to start the algorithm–the quantum computer then calculates the expectation value of the system

with respect to an observable–the Hamiltonian–using the ansatz [11]. The process is followed by

a classical optimizer to improve the initial guess of the wavefunction.

The overall framework is presented below:

1. Hamiltonian Representation and Construction The Hamiltonian represents the physical

system. Hence, many different forms of Hamiltonians exist in the physical sciences in order

to model the various complex systems that exist in nature. Examples include models like

lattice models and vibrational spectroscopy, with each making specific assumptions when

defining the Hamiltonian to model the system. While those assumptions hold merit for

certain purposes, here will be presented and discussed the electronic structure Hamilto-

nian, whose construction is generally developed for the primary purpose of reducing the

complexity of the eigenvalue problem.

The initial stage of the Variational Quantum Eigensolver (VQE) procedure is to define the

Hamiltonian, that is, the system for which we want to find the ground state energy. The

Hamiltonian construction is done by identifying the set of operators and their associated

weights between basis functions that span the space representing the physical system.

These basis functions symbolize the individual particle’s degrees of freedom. This first step

in the VQE process is crucial as setting up the Hamiltonian – with their operators, their

associated wavefunctions, and the choice of basis – will have a profound impact on the

computational resources, accuracy, and outcome of the calculation.

The different depictions of the electronic structure include mean-field calculations, local-

atomic functions, or plane-wave methods. These are all depictions of the spatial distribution–

"orbitals"– of the single-particle Fock states that form the basis of the many-body system.

There is further complexity when considering electrons as the Pauli Exclusion Principle
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dictates that the wavefunction must be anti-symmetric with respect to the exchange of two

electrons (i.e., fermionic particles cannot be distinguished from one another). A decision

must be made as to whether the anti-symmetry must be imposed via the definition of the

wavefunction or through the definition of the operators. This has been historically called

"first-" and "second-quantization", respectively.

In second quantization, the Hamiltonian is expressed in terms of fermionic operators

known as the creation and annihilation operators (denoted a j, and a†
j, respectively). These

fermionic operators indicate/dictate to either add or subtract an electron from a specifically

indexed (labeled j) basis function (representing an orbital or lattice position). Furthermore,

these operators inherit the fermionic anti-symmetry condition for the exchange of two par-

ticles. Second quantization is intended as a simplified procedure to ensure anti-symmetry.

2. Operator Encoding

Operator encoding is a necessary process in quantum computing as quantum computers

are limited to measuring observables only in the Pauli basis (because spins of particles are

binary – either spin up or spin down). This Pauli basis is expressed as: {I, X ,Y , Z}⊗N for N

qubits. In first quantization, operators can be translated into spin-operators directly since

they are not used for the anti-symmetry condition. However, in the second quantization

(for which this thesis is concerned with), the Hamiltonian must be represented as a linear

combination of the fermionic (i.e. creation and annihlation) operators to enforce the anti-

symmetry. Therefore, the Hamiltonian in this form must be transformed into a form that

is made up of a string of spin – or "Pauli"– operators. The encoding has an effect on gate

depth and other quantum computing resources, especially when considering the choice of

ansatz (which will be discussed later).

3. Measurement Strategy

When the resultant Hamiltonian has been established as a string of Pauli-operators,

it is necessary to appropriately group the Hamiltonian terms for the measurement of

their expectation values. The purpose of this is to reduce the number of quantum circuit

completions–that is, measurements–also known as shots. This is important as the greater

number of shots implies a greater number of computational resources. The primary method

by which to do this is for one to exploit the commutative property between the groups of

operators in the Hamiltonian which (because of this property) can be measured together,

thereby reducing the number of necessary shots. Considering this implies that the quantum

circuit must be designed such that it will process each group appropriately and perform the

joint measurement.

4. Ansatz Implementation and State Preparation
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The procedure following the Hamiltonian setup in the VQE process is to appropriately

prepare the trial wavefunction. This is known as "state preparation" and it first requires one

to choose the structure of the parametrized quantum circuit (called the ansatz). This ansatz

generates the trial state with which the Hamiltonian may then be measured. This trial state

becomes the model for the ground state wavefunction of the system. Various ansatz have

been proposed, with each offering benefits while carrying certain limitations in the context

of the problem at hand. Therefore the selection of the ansatz is crucial. The main question

regarding ansatz selection is the ansatz’s capability of encapsulating and reaching the

various states in the Hilbert space representing the problem. This ability of reaching a large

set of states in the Hilbert space is defined as the expressibility. Another critical question

is regarding the ansatz practical ability on the quantum hardware, considering factors

like the number of parameters and their linear dependence, the optimization landscape,

and the phenomenon of barren plateaus. This is known as trainability. An effective ansatz

balances the expressivity to ensure accurate ground state representation without becoming

overly complex that it makes the target state search unfeasible and daunting. Lastly, it is

important to mention that the choice of ansatz will also be crucial as it heavily influences

the VQE’s tolerance to noise.

5. Parameter Optimization

The next step in the VQE pipeline is to iteratively optimize the parameters of the ansatz

until a convergent solution is achieved. To do this, one must compute the expectation

value of the Hamiltonian multiple times to develop an update rule for the parameters.

Selecting an optimization is important as it affects the shot-number, and the number of

iterations necessary for reaching the converging solution. Moreover, different optimizers

have different trade-offs.

6. Error Mitigation

The attention now shifts to the last part of the VQE process: error mitigation. Noise is one

of the main challenges in the evolution of quantum technology. Hence, error mitigation is

the process of reducing the effect of quantum noise through post-processing techniques on

the measurement data. More on this topic will be discussed later.

2.2.1 The (electronic structure) Hamiltonian
The construction of a Hamiltonian ought to be the first step in any quantum computing sce-

nario. This is true because the Hamiltonian represents the system which is being studied. In

order to construct the Hamiltonian that models the physical system, one must have a suitable

understanding of the physical processes (physics and chemistry) behind the system, represent

this mathematically, and then translate this mathematical representation in the language of

quantum computing–namely, in terms of qubits and gates.

18



2.2. THE GENERAL VQE PIPELINE

In quantum chemistry, the Hamiltonian is the mathematical object known as an "opera-

tor" that represents the total energy of a system. Mathematically, the operator is represented by

a matrix.

The molecular Hamiltonian is the representation of the total energy (hence, an oper-

ator) of a molecular system defined by its atomic configuration. After attaining this molecular

Hamiltonian–which also holds information on the geometry of the system– the electronic wave-

function must be obtained as this contains the lowest (i.e. ground state) energy. This wavefunction

presents the correlated probability amplitudes of the electrons in the space surrounding the

nuclei.

Assuming non-relativistic settings and ignoring the motion of the much-heavier nuclei

(i.e. Born-Oppenheimer approximation), the electronic Hamiltonian can be written as:

(2.1) Ĥ = T̂e + V̂ne + V̂ee,

where

(2.2) T̂e =−∑
i

ħ2

2Mi
∇2

i ,

(2.3) V̂ne =−∑
i,k

e2

4πϵ0

Zk

|ri −Rk|
,

in which Rk are the nuclear positions, and

(2.4) V̂ee =
∑
i< j

e2

4πϵ0

1
|ri −r j|

.

Equations (2.3) and (2.4) depict the potential energy due to electron-nucleus and electron-

electron interactions, respectively. Also, ri signifies the position of electron i, Mi its mass, Zk the

atomic number of nucleus k, e is the elementary charge, ħ is the reduced Planck constant, and

∇2
i is the Laplace operator acting on electron i [25].

Second Quantization
In quantum computing, second quantization is important in order to formulate problems in a

way that can be processed by quantum algorithms [24]. In the first quantization, each particle in

a system is described by its own wave function, and the overall state of the system is a product of

these individual wave functions. This approach becomes cumbersome for systems with a large

number of particles. But second quantization shifts the focus from individual particles to the

states that particles can occupy.

The central idea behind second quantization is the principle that particles in quantum

mechanics are indistinguishable. That is, in classical mechanics, different arrangements of the
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position vectors represent distinct many-body states. However, in the quantum realm, particles

are identical, and swapping any two particles does not result in a new many-body quantum

state. This means that the quantum many-body wave function remains consistent (except for a

potential phase change–i.e. a sign change) when two particles are exchanged. As a result, the

two types of particles–bosons and fermions– will have a many-body wave function that is either

symmetric or antisymmetric, respectively, upon an exchange of particles.

The wave function for Bosons and Fermions:

ΨB(. . . ,ri, . . . ,r j, . . .)=+ΨB(. . . ,r j, . . . ,ri, . . .)

ΨF(. . . ,ri, . . . ,r j, . . .)=−ΨF(. . . ,r j, . . . ,ri, . . .)

The first step is to then understand the total energy of the molecule being studied. In

this thesis, we present the case of Lithium Hydrite (LiH) as the molecule under study. To do this,

one must first define the electronic Hamiltonian of the molecule in question, which describes

the behavior of electrons under the influence of the nuclei.

Ĥ =∑
i j

ti ja
†
i a j + 1

2

∑
i jkl

Vi jkla
†
i a

†
jalak

in which:

• ti j are the one-electron integrals, representing the kinetic energy of the electrons and their

interaction with the nuclei.

• Vi jkl are the two-electron integrals, representing the repulsion between pairs of electrons.

• a†
i and a j are the creation and annihilation operators, which add or remove an electron in

the i-th or j-th quantum state, respectively.

The above Hamiltonian describes the total energy of the system, accounting for both the individ-

ual movements of electrons and their interactions.

2.2.2 Ansatz
An ansatz consists of a quantum circuit or a quantum state represented in a parameterized form.

This means that the ansatz includes adjustable parameters (angles) that can be tuned during the

optimization process to explore different quantum states.

Ansatz may be classified into two different types: the fixed structure ansatz which

are those ansatz that are set at the beginning of the optimization process and do not change

throughout, and the adaptive structure ansatz which are made to iteratively optimize. Another

important aspect to note regarding ansatz is the metrics used to define and measure their

performance objectively, making them easy to compare against one another. These include:
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Figure 2.1: HEA Structure

1. The depth of the ansatz (number of sequential operations required for the implementation),

which impacts the overall runtime of the method, its resilience to noise, and to barren

plateaus.

2. The number of parameters, which significantly influence the overall runtime of the imple-

mentation (although this cost can, in theory, be entirely parallelized) and the complexity of

the optimization process.

3. The number of entangling gates, which is generally the main source of noise resulting from

execution of a quantum circuit.

2.2.3 Hardware-Efficient Ansatz (HEA)
The Hardware-Efficient Ansatz (HEA) is currently a widely used approach in quantum computing.

This is likely due to the limitations of the current state-of-the-art quantum-computing hardware

which thereby give reason to use an ansatz that is particularly adjusted to the quantum device

being used. Nonetheless, the HEA ansatz has a common structure: repeated blocks/"layers"

consisting of single-rotation gates followed by connecting entangling gates.

A general example of a HEA-structure can be visualized in 2.1

The mathematical representation of the HEA ansatz is as follows:

|ψ(Θ)〉 =
[

d∏
i=1

Urota(θi)×Uent

]
×Urota(θd+1) |ψinit〉 ,

where:
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• Urota(θi) = ∏
q,p Rq

p(θq
p), with q representing qubit and p ∈ {X ,Y , Z} (Parametrized Pauli

rotations)

Main Advantages of HEA include:

• flexible to adjust on the appropriate device with different rotation- and entangling-gates

• simplicity in construction

Main Disadvantages of HEA include:

• does not guarantee the spanning of the entire Hilbert space

• problems and limitations by barren plateaus

• typically requires more parameters with more qubits involved when compared to other

ansatz

• theorized to be less efficient for larger scale problems

2.2.4 Unitary Coupled Cluster (UCC) Ansatz and Variations
The Unitary Coupled Cluster (UCC) Ansatz is perhaps the most applicable ansatz for the VQE

and has garnered significant attention in recent years. The "coupled cluster method" is a well

known method originating in traditional (classical) chemistry computations. It works by taking

a simple guess of a molecule’s state and then systematically improving it by considering how

electrons in the molecule interact with each other. However, this ansatz was not used in this

research.

2.2.5 Barren Plateaus
One of the major obstacles presented against the variational quantum algorithms is the "barren

plateau" phenomenon [13]. This is where optimization gradients vanish thereby giving a flat

optimization landscape and making it challenging to identify the direction of optimization. In

other words, the cost function essentially becomes flat thereby making it extremely difficult to find

a minima or maxima. This leads to a search that is a stochastic (i.e. random) gradient estimation.

Despite mentioning gradients, gradient-free optimizers (like the particle swarm optimization

method that will be discussed later) progress iterative by sampling the cost landscape of specific

parameters, and so if the variance across the landscape is too small, then it becomes impossible

to accurately progress through the optimization step. The barren plateau problem implies that

the expectation value of an observable with respect to a random state concentrates exponentially

around the mean value of that observable [13], rendering the optimization process intractable

away from the mean [25]. This problem is dependent on the number of qubits at play, the

expressibility of the ansatz, the locality of the cost function, the level of entanglement of the

trial wavefunction, and/or the amount and presence of quantum noise. For example, it has been
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shown that the more expressive an ansatz is, the more likely it is to encounter the barren-plateau

problem [10]. It seems that the barren plateau phenomenon is an inherent property that emerges

as a result of entanglement, and since entanglement is a key feature of quantum computation,

the phenomenon of barren plateaus is an unavoidable situation.
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3
PARTICLE SWARM OPTIMIZATION

This thesis is about applying non-gradient optimization methods to the VQE procedure as

the classical method of optimizing the parameters in search for the lowest energy levels

of molecular systems. The classical optimization method that is discuss here is known as

the Particle Swarm Optimization algorithm (PSO).

3.1 Introduction to Particle Swarm Optimization

The principle idea behind the original Particle Swarm Optimization method is that the collective

and self-organized system can identify the best solution of some existing search space. The

collective entity – known as a swarm – is made up of n individual particles [12].

Each particle follows the following update rule in each iteration:

Velocity update: v(t+1)
i = w ·v(t)

i + c1 · r1 · (p(t)
best − x(t)

i )+ c2 · r2 · (g(t)
best − x(t)

i ),

Position update: x(t+1)
i = x(t)

i +v(t+1)
i .

where vi and xi are the velocity and position of the i-th particle at the t-th iteration, respectively.

pbest denotes the best position that the particle has encountered thus far, and gbest represents

the best position found by the entire swarm. The coefficients w, c1, and c2 are the inertia

weight, cognitive coefficient, and social coefficient, respectively, which balance the exploration

and exploitation abilities of the swarm. Random variables r1 and r2 are introduced as to provide

a stochastic feature to the update process, enhancing the algorithm’s searching ability.

As the swarm iterates through the search space, the particles adjust their trajectories

based on both their individual experiences and the collective knowledge of the swarm. The

balance between these two functions is crucial for effectively converging to the optimal solution

without over-exploring or over-exploiting the search space.
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Reasons that motivate for the study and implementation of the PSO algorithm include

the inherent ability in the PSO algorithm to efficiently solve high-dimensional and complex

optimization problems, and its ease and simplicity in implementation.

Figure 3.1: An example of the movement of a particle in a two-dimensional space based on the
PSO algorithm in a single iteration. An inertia term given by velocity that drives the particle in
some direction, a memory term (p j) that influences the particle’s trajectory based on its history,
and a global-best cooperation term (g) that reflects the best result amongst the entire swarm
which also influences the particle’s projected movement. Beware the different notation used in
this diagram: i indicates iteration, while j indicates particle number unlike in the equations
presented above.

3.2 Constriction Factor PSO

The original PSO was developed in 1995 by Eberhart and Kennedy having been inspired by social

behavior patterns of birds flocking or fish schooling [8]. Since then the PSO algorithm has evolved

various variants and undergone crucial analysis. For example, the original PSO did not include

the w "inertia" term. An analysis of this original PSO done by the authors, and another study

done independently by Ozcan and Mohan (1998) was done without an inertial weight until it was

analyzed to be an extremely helpful requirement [16]. The particular PSO that we have chosen

to study and use as a comparison to other optimization methods is known as the "Constriction

Factor PSO". Introduced by Clerc and Kennedy in 2002, the constriction factor PSO variation

incorporates a constrictor coefficient to control the particle’s velocity, thereby preventing the

particles from exploding to infinity and helping to converge more rapidly to an optimal solution
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3.2. CONSTRICTION FACTOR PSO

[4]. This model was a significant advancement over the original PSO, giving better stability and

convergence properties.

This PSO-algorithm velocity update equation is modified as follows:

Velocity update: v(t+1)
i = χ

[
v(t)

i + c1 · r1 · (p(t)
best − x(t)

i )+ c2 · r2 · (g(t)
best − x(t)

i )
]

,

where χ= 2

|2−ϕ−
√
ϕ2 −4ϕ |

,

ϕ= c1 + c2, ϕ> 4.

As previously mentioned, r1 and r2 are random vectors, with each element drawn from

a uniform distribution in the range [0, 1]. These vectors introduce stochasticity into the particle

updates and ensure that the search space is explored thoroughly.

The coefficients c1 and c2 are the cognitive and social coefficients, respectively. The

cognitive coefficient c1 influences how much a particle is attracted to its own best-known position,

representing the particle’s memory or "cognition" of its own experience. The social coefficient

c2 influences how much a particle is attracted to the best-known position found by the swarm,

representing the "social" interaction between particles.

The mathematical restrictions on c1 and c2 in the standard PSO (from here on will

be shortened to SPSO) are typically related to ensure that the swarm converges to a solution

without becoming unstable or exhibiting excessively random behavior. This is the motivation for

the constriction factor χ seen in the constriction factor PSO. As previously stated, χ’s role is to

control the velocities and ensure a stable proper convergence. In fact, it behaves as a damping

term to reduce explosions in the system. The requirement that φ > 4 was shown in the PSO

analysis [4] to be an important implementation for the constriction factor to be meaningful. This

term, which is the sum of the cognitive and social coefficients, is called the “acceleration constant”.

Its behavior is such that if it is set too small, the trajectory of a particle falls and rises quite

slowly; but as its value is increased, the frequency of the particle oscillating around the weighted

average of its personal best and global best is also increased.

In practice, c1 and c2 are often set to values that allow the swarm to balance exploration

and exploitation effectively. A common choice is to set c1 = c2 = 2.05, which, using the above

formula for χ, gives a constriction factor of approximately 0.729.

It is important to note that the choice of these parameters can greatly affect the perfor-

mance of the PSO algorithm, and they may require tuning based on the specific problem being

solved.
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3.3 Pseudocode of Basic PSO

Provided here is the pseudocode for the basic original PSO algorithm, followed by a description of

each variable in the table:

Algorithm 1 Basic PSO Algorithm
1: Randomly generate an initial population of particles with positions xi and velocities vi.
2: while termination criterion is not met do
3: for each particle i do
4: if f (xi)< f (pi) then
5: pi ← xi
6: end if
7: pg ←min(p_neighbours)
8: for each dimension d do
9: VELOCITY_UPDATE(vi[d], pi[d], pg[d], xi[d])

10: POSITION_UPDATE(xi[d],vi[d])
11: end for
12: end for
13: end while
14: function VELOCITY_UPDATE(vi[d], pi[d], pg[d], xi[d])
15: vi[d]← w ·vi[d]+ c1 ·rand() · (pi[d]− xi[d])+ c2 ·rand() · (pg[d]− xi[d])
16: end function
17: function POSITION_UPDATE(xi[d],vi[d])
18: xi[d]← xi[d]+vi[d]
19: end function

Table 3.1: Explanation of Symbols Used in PSO Algorithm
Symbol Description
xi Represents the position of the i-th particle, in d-dimension.
vi Represents the velocity of the i-th particle, in d-dimension.
pi The best-known position of the i-th particle (personal best), in d-dimension.
pg The best-known position among the particle’s neighbours (global best), in d-dimension.
f The fitness function to be minimized.
w The inertia weight.
c1 and c2 Cognitive and social coefficients.
rand() A random number between 0 and 1.

3.4 Problems with PSO

While the PSO algorithm boasts several advantages such as robustness, simplicity, ease of

implementation, and a potential for parallelization, it is not without significant drawbacks.

These drawbacks can hinder its effectiveness and efficiency, especially in complex or dynamic

optimization problems [18].
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One of the primary issues with PSO is its tendency to prematurely converge to local

optima, especially in complex and high-dimensional search spaces. This issue with premature

convergence occurs because the particles in the swarm can become overly influenced by a few

individuals that have found relatively good solutions early on, leading the entire swarm to cluster

around suboptimal areas of the search space, also known as "local minima". This is a limitation

of the algorithm’s exploratory ability.

Another significant problem with PSO is its sensitivity to the choice of parameters.

While there are only three tunable parameters: inertia weight, cognitive coefficient, and social

coefficient, selecting inappropriate parameter values can either cause the swarm to converge too

quickly, missing the global optimum, or prevent convergence altogether, leading to erratic and

inefficient search behavior. Finding the right parameter settings to balance between exploitation

of the area or exploration of new area is therefore crucial for the algorithm to navigate the search

space effectively and successfully. This is particularly challenging when the search space is highly

complex and/or dynamic, and also since different problems have different solution landscapes

(objective functions). Moreover, analysis done on the PSO indicates a specific required settings for

the parameters (which we have stated them to be c1 = c2 = 2.05 and an inertia weight of 0.729).

Any adjustments to these settings will cause significant changes and most likely result in an

unstable and poor PSO performance.

Lastly, PSO is generally computationally intensive, particularly for large-scale optimiza-

tion problems. The algorithm requires the evaluation of the objective function for each particle

in the swarm at every iteration, leading to high computational costs. This can be particularly

problematic for problems with expensive objective functions or when the number of particles and

iterations required for convergence is large. The motivation for studying the PSO and applying it

to VQE problems was largely due to the PSO’s parallelization abilities. Nonetheless, we have

developed a new optimization algorithm that we are applying to VQE problems which address

the optimization impediments of the particle swarm optimization method. This new algorithm

will be discussed in the next chapter.
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4
HOPSO: HARMONIC OSCILLATOR PARTICLE SWARM

OPTIMIZATION

4.1 Introduction and Motivation

In the previous chapter it has been shown how the Particle Swarm Optimization algorithm

operates, and what advantages and disadvantages it has. Despite having many benefits, the PSO

algorithm has some issues which can be improved upon. To reiterate what has been stated in the

last chapter, the primary issue with the PSO is that the few parameters involved require careful

tuning to achieve optimal performance. The number of particles in the swarm, the inertia weight,

and the cognitive and social components of the algorithm all dramatically influence the evolution

of the search, and incorrect parameter settings can lead to poor results including premature

convergence or explosions. Tuning these parameters requires extensive experimentation and

domain knowledge, which can be time-consuming and may not always yield satisfactory results,

especially when applying PSO to various problems. In general, analysis on the PSO performance

indicates a few specific settings of the inertia, cognitive and social coefficients, which lead to

proper performance. But practically any adjustment to these settings will result in explosions or

premature convergence.

To retaliate and improve on the drawbacks of the PSO, an optimization algorithm is

presented here that takes the general idea of the particle swarm optimization, but modifies it such

that the algorithm is based on some physically-inspired system, namely the harmonic oscillator.

As a result, not only is it easier to keep track of the motion (since we know the equations and

movement of harmonic oscillations), but we are also able to fine-tune the algorithm such that it

will avoid explosions as seen in the PSO algorithm, and will also converge in a more controlled

manner.
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Particularly, suppose that each particle searches the space by oscillating about a term

which represents the balance between the personal- and global-best positions. This motion is

represented as simple harmonic motion. Specifically, the particle acts as a damped oscillator.

The motivation behind this idea is that searching the space with this physical model

will ensure a convergence in a controlled manner, and avoid explosions entirely as the physical

model implies that the energy cannot increase in the search. This model therefore allows not only

for a more finely-tuned search overtime but also guanrantees a convergence. It’s controllability

should also result in a stronger resilience against getting trapped in a local minima, something

that the PSO often struggles with.

4.2 HOPSO Algorithm: a Modified PSO

4.2.1 Damped Oscillation Introduction and Review
Undamped Mass-Spring System:

Imagine a mass m attached to a spring with spring constant k. The spring exerts a

force on the mass proportional to the displacement x from equilibrium according to Hooke’s law:

Fs =−kx. The negative sign indicates the force is always opposite the displacement, acting as a

restoring force. Applying Newton’s 2nd law F = ma gives the equation of motion: m d2x
dt2 =−kx

Rearranging: d2x
dt2 + k

m x = 0 Let ω2
0 = k

m , then: d2x
dt2 +ω2

0x = 0 This is the differential equation for

simple harmonic motion. The general solution is: x(t)= A cos(ω0t+φ) where A is the amplitude,

ω0 =
√

k
m is the natural frequency, and φ is the phase determined by initial conditions.

Damped Mass-Spring System: 2 Now suppose a damping force is added, which is proportional

to the velocity, Fd =−b dx
dt , where b is the damping coefficient. This could represent air resistance

or friction in the system.

The equation of motion becomes:

(4.1) m
d2x
dt2 +b

dx
dt

+kx = 0

Dividing through by m:

(4.2)
d2x
dt2 + b

m
dx
dt

+ k
m

x = 0

Let 2γ= b
m and ω2

0 = k
m , then:

(4.3)
d2x
dt2 +2γ

dx
dt

+ω2
0x = 0

This is the damped harmonic oscillator equation.

The solution depends on the relative values of γ and ω0:
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Overdamped (γ>ω0):

(4.4) x(t)= c1e−(γ−
√
γ2−ω2

0 )t + c2e−(γ+
√
γ2−ω2

0 )t

Critically damped (γ=ω0):

(4.5) x(t)= (c1 + c2t)e−γt

Underdamped (γ<ω0):

(4.6) x(t)= e−γt[c1 cos(ωt)+ c2 sin(ωt)]

where ω=
√
ω2

0 −γ2 .

The constants c1 and c2 are determined by initial conditions.

For the underdamped case, the oscillations decay exponentially with a time constant

τ = 1
γ
. The "frequency" is reduced to ω =

√
ω2

0 −γ2 . Many real systems are underdamped and

exhibit decaying oscillations, such as a mass bouncing on a spring. The critical damping coefficient

bc occurs when γ=ω0, or bc
2m =

√
k
m . Solving for bc: bc = 2

p
mk This represents the boundary

between oscillatory and non-oscillatory motion.

In summary, the key equations for damped mass-spring systems are: the Equation of

motion: d2x
dt2 +2γ dx

dt +ω2
0x = 0, the Natural frequency: ω0 =

√
k
m , the Damping ratio: ζ= γ

ω0
= b

2
p

mk
,

the Pseudo-frequency (underdamped): ω = ω0
√

1−ζ2 , the Critical damping: bc = 2
p

mk . The

type of motion (overdamped, critically damped, underdamped) depends on the relative values of

the damping coefficient b compared to the critical damping bc.

4.2.2 HOPSO Algorithm Explained
In the above section that served as a refresher on damped systems, we see that the equation of

motion for the damped harmonic oscillator (re-written):

(4.7) x(t)= A0e−λt cos(ωt+θ)

where, x(t), A0,λ,ω and θ represent position of the particle at time t, initial amplitude, damping

factor, angular frequency and initial phase of the oscillation respectively.

For this harmonic-oscillator inspired PSO-based algorithm, we consider this solution

to the damped-harmonic oscillator to represent each particle’s position (in each dimension of

the position vector) along with a damping term as a control mechanism to vanquish the issue of
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swarm-explosion as found in the standard PSO algorithm.

Since we now have the position equation for the algorithm, we know the velocity equation

as being simply the derivative of the position variable (4.7) at any time t:

(4.8) v(t)=−ω(A0e−λt sin(ωt+θ))−λ(x(t))

The time parameter t is generally taken to be equal to one in the standard PSO and

reflects the change in iteration. Here in HOPSO however, the time parameter does not relate with

the change in iteration but rather the positions are sampled randomly in time. This is the source

of randomness in the HOPSO algorithm unlike r1 and r2 in PSO. The time is chosen randomly

within the interval [0,tul] for each particle and in each dimension, where tul is the upper limit of

the sampling range. The iterative change in parameter t is shown in (4.9).

(4.9) t(i+1)= t(i)+ rand[0, tul],

where i is the iteration. We generally set this upper limit lower than 2π, which is the period of

the oscillation. As a rule of thumb, one should choose a lower tul for sampling positions close to

each other and higher tul to increase the chances of sampling positions far away from each other.

The HOPSO optimization proceeds as follows:

Initialize each particle j in the swarm with random positions x j and velocities v j

uniformly distributed over a D-dimensional parameter search space bounded by [−π,π].

Note the initial personal best position p j to be the initial position for each particle, and

define the global best position g as the best position among all particles.

After knowing the global and personal best position, calculate the position of the attrac-

tors for each particle as

(4.10) a j,d = |c1 p j,d + c2 gd|
c1 + c2

where a, p, g represent the position of the attractor, personal best position of the particle and

global best position. The c1 and c2 represent the weights of attraction towards personal-best

and global-best positions, respectively. Typically, the values c1 and c2 are set equal, thereby the

attractor lies equidistant between the personal best and global best position. The subscript j

represents the index of the particle and subscript d represents the dimension.

The initial amplitude for each particle is determined with initial conditions when setting

t as zero. We solve (4.8) to obtain the A0 for each particle:

(4.11) A0 =
√

(x(0)−a)2 + (v(0)+λ(x(0)−a))2

ω2

Once the amplitude has been determined, the initial phase of the oscillation can be
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calculated as

(4.12) θ = arccos
x(0)−a j,d

A0

We then let the particles oscillate in time. For every iteration, we stop the clock at a

random time, calculate the values of the cost function for all the particle positions. If there

is a change in p j, then the attractor for the jth particle is recalculated using (4.10) while the

amplitudes are recalculated by resetting the time for that particular particle as zero using (4.11).

If instead there is a change in g, then all the attractors are changed accordingly using (4.10). The

amplitudes are also recalculated in this case.

4.2.3 Amplitude-Threshold Equations
When the amplitudes are first calculated, it is possible that the amplitude of oscillation is

calculated to be not large enough to explore the landspace properly between the personal best

position and the global best position about its attractor. As a solution to this, we provide the option

for the amplitude to take on either the initially calculated amplitude, or an added lower bound

in which the amplitude is at least half the absolute difference between the personal-best and

global-best position times a multiplier m. The choice depends on which one is more advantageous

for the search (i.e. a greater amplitude). This is reflected mathematically as:

(4.13) A0 =max(A0,
|p j,d − gd|

2
∗m)

The multiplier term (m) is applied to the amplitude to account for the magnitude of the

c1 and c2 (since (4.10) only accounts for ratio between c1 and c2 and not the magnitude). This is

taken as inspiration from the PSO.

We also make a ‘cut’ on the amplitude of the oscillation of each particle. That is, irre-

spective of whether a global or personal best position is found, the particle’s oscillation will decay

until it reaches a threshold and then continue to oscillate with a constant amplitude, as seen

below:

(4.14) A =max(A0e−λt,
|p j,d − gd|

2
∗m)

This amplitude-cut is done so that the particle continues searching in a reasonable-sized

space.

Figure (4.1) is the general representation of the HOPSO algorithm. Specifically, this

figure is a one-dimensional visualization that demonstrates a single particle’s oscillation in

one-dimension, about the attractor ai which is set half-way between its personal best position

(p j) and the swarm’s global best position (g) according to the weighted average equation (4.10)

when c1 = c2 = 1.

In the movement of the HOPSO algorithm we find three situations when we must

recalculate the amplitudes:

35



CHAPTER 4. HOPSO: HARMONIC OSCILLATOR PARTICLE SWARM OPTIMIZATION

Figure 4.1: HOPSO Visualization: In one-dimension, the particle oscillates about the attractor a j
which is set half-way between its personal best (p j) and the swarm’s global best (g) based on the
weighted average equation (4.10). j represents the particle number.

• x j → p j: when the position is found to be the particle’s new best position.

• x j → g: when the position is found to be the particle’s new best position but it is also the

global best position of the swarm.

• x j → x j: when the position is neither the personal nor the global best position, but another

particle has found a global best position hence the amplitudes are recalculated for all

particles in the swarm.

In summary, amplitudes are recalculated when a new personal or global best position

is found. This is because the attractor term will change since it depends on personal and global

positions (4.10). As a result, the initial amplitude equation (4.11) will be different.

As previously mentioned, when the amplitude is recalculated, it is possible for the

amplitude to become smaller despite a better solution found by the particle. Since this is a

physically-inspired system, we reckon that the energy of a system should not be lost in the event

that it finds a better position. In other words, the system should not be penalized when a better

position is found. Since the energy in a system is represented in the amplitude, we deemed it

appropriate to provide options for the amplitude as depicted in the following equation (4.15).

(4.15) (A0)i+1 =max((A0)i, (A0)i+1,
|p j,d,i+1 − gd,i+1|

2
∗m)

This condition will ensure that the energy will remain at least as much as it had

previously hence allowing for proper exploration.
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Figure 4.2: HOPSO Movement Example: When the amplitude reaches a threshold, we make sure
it does not go below the equation seen in the figure, where ’m’ is a multiplier term set to 2.05
which is the same as the cognitive and social coefficient in the standard PSO.

The figure 4.2 depicts a specific case where x j is found to be a new personal best position,

thereby changing the attractor. If there occurs a small velocity that was calculated in the next

iteration. In this case, the second term in (4.11) can be neglected (since velocity is near zero and

squaring the already-small lambda term also results in an overall term that is negligible). This

implies that equation (4.11) will change to:

(4.16) A0 =
√

(x(0)−a)2 = x(0)−a

Recall (4.10) for the a j term. Also recall that if a personal best was found then x(0)= p j Plugging

this into the above equation we have:

(4.17) A0 = x(0)− |c1 p j,d + c2 gd|
c1 + c2

Since in our case the attractor places equal weights to the social and personal best positions, c1 =

c2, we can rewrite the above equation simply as:

(4.18) A0 =
|p j,d − gd|

2

4.2.4 Parameters of HOPSO
The amplitude A j and phase angle θ j are calculated ‘parameters’ that control the magnitude

and direction of each particle’s oscillation around its attractor point, and are responsible for

enhancing the thoroughness of the search in the surrounding area. They are the primary drivers

of finding better positions, and are calculated based on the current particle positions, velocities,

and attractors.

Apart from the amplitudes and phase angles, there are actually four main parameters

in the HOPSO optimization stratergy. These are ω (which is related to time, and set to equal one),

the cognitive and social coefficients (which are also set to equal one), and the damping factor, λ.

The damping factor λ, however, is the most crucial of all the parameters. It is this

parameter that allows for the control over the systems convergence. Specifically, if you have

a specific budget (that is, how many iterations to run), you can adjust λ appropriately in the
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HOPSO algorithm, which is entirely impossible for the PSO. The PSO has the χ parameter which

acts as a damping factor. However, a slight re-adjustment of the χ factor to reduce damping can

cause explosion in the system. There is not a clear understanding or transition in the damping of

the system. But in HOPSO, this λ factor allows for a more finely-tuned system and no explosions

involved.

It is crucial to experimentally verify which setting of these coefficients produce optimal

results, and understand what the effects are on the system when varying these settings.

4.2.5 Pseudocode of HOPSO
The pseudo-code for the algorithm is shown in 2.

In summary, the provided code implements a damped particle swarm optimization algo-

rithm inspired by the mass-on-a-spring system. It incorporates equations of motion, damping,

and attraction forces to guide the particles towards optimal solutions. While it deviates from

the physical system in some aspects, such as discrete-time updates and additional optimization

features, it is effective in its application to solve optimization problems.

The code also includes various data structures and variables to store and track the

optimization progress, such as the particle positions, velocities, personal best positions, global

best position, and cost function values at each iteration. These data structures are used for

analysis and visualization of the optimization process.
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Algorithm 2 HOPSO
1: Set constants c1, c2 for attraction weights
2: Set constants λ
3: Initialize particles with random positions x j,d and velocities vi,d
4: Set initial personal best positions p j for each particle
5: Set initial global best position g
6: Calculate position of attractors for each particle via ai = c1 pi+c2 g

c1+c2

7: Calculate initial amplitude: A0 =
√

(x(0)−a)2 +
(

v(0)+λ(x(0)−a)
ω

)2

8: Calculate initial phase: θ = arccos
(

x(0)−a
A0

)
9: while iteration < max_iterations do

10: for each particle do
11: for each dimension do
12: Amplitude is decreasing: A = A0 ·exp(−λ · t)
13: Select the larger amplitude: A =max

(
A0e−λt, |p j−g|

2 ·m
)

14: Calculate position: x(t)= A0e−λt cos(ωt+θ)
15: Calculate velocity: v(t)=−ω(A0e−λt sin(ωt+θ))−λx(t)
16: end for
17: end for
18: for each particle do
19: Calculate Cost function from positions
20: if Cost_ f unction(x j,d(t))< Cost_ f unction(p j) then
21: p j = x j,d
22: new best value = Cost_ f unction(x j,d(t))
23: Reset time = 0
24: Recalculate attractors
25: Recalculate amplitude
26: Recalculate phase
27: end if
28: end for
29: if personal best value < global best energy then
30: new best value = Cost_ f unction(x j,d(t))
31: g = p j
32: for each particle do
33: for each dimension do
34: Reset time = 0 for each particle, all dimensions
35: Recalculate attractors for each particle, all dimensions
36: Recalculate amplitude for each particle, all dimensions
37: Recalculate phase for each particle, all dimensions
38: end for
39: end for
40: end if
41: iteration += 1
42: end while
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5
PROGRESS AND RESULTS

5.1 Test Functions and Optimization Method Comparison

Before applying the HOPSO optimization algorithm to the VQE algorithm, we present its

performance on more simple, standard benchmark functions. This test on smaller functions

will demonstrate the reason for pursuing the development of this algorithm with the goal of

applying it to the complicated hamiltonian of Lithium-Hydrite. The functions that will be used

were chosen for their different properties [22]. For example, Ackley and Rastrigin are functions

with many local minima’s, the Sphere function is a bowl-shaped function while the Beale function

is multimodal, with sharp peaks at the corners of the input domain.

The performance of HOPSO will be compared to that of PSO, COBYLA, and DE opti-

mization methods. COBYLA and Differential evolution are optimizers existing within the scipy

package that was used, while PSO was used with the pyswarm package. It is difficult to compare

optimization methods as each one has a unique set of parameters that require fine-tuning and a

particular configuration setting that will result in an optimum solution to the particular prob-

lem. However, there are commonly-known“standard settings" which result in a typically-good

performance by the optimization method. For the PSO these standard settings are χ is 0.729, and

with c1, c2 being each 2.05. The HOPSO settings were c1 = c2 =ω= 1, while λ and tul were often

adjusted for various cases. These two latter terms may be considered the main tuning parameters

to achieve optimal results.

In comparing these optimizers, the same number of function evaluations was used as the budget

for each optimizer. The PSO’s function evaluation is a product of the number of particles used

and the number of iterations which is the same for the HOPSO. We used scipy’s optimize module

to implement COBYLA and DE [27]. For COBYLA, its maxiter parameter equals the number of
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Table 5.1: Commonly used test functions for optimization methods

Name functional form

Sphere
∑d

i=1 x2
i

Beale (1.5− x1 + x1x2)2 + (2.25− x1 + x1x2
2)+ (2.625− x1 + x1x3

2)
Goldstein-price [1 + (x1 + x2 + 1)2(19 − 14x1 + 32

1 − 14x2 + 6x1x2 + 3x2
2)][30 + (2x1 −

3x2)2(18−32x1 +12x2
1 +48x2 −36x1x2 +27x2

2)]

Ackley −aexp
(
−b

√
1
d

∑d
i=1 x2

i

)
−exp

( 1
d

∑d
i=1 cos(cxi)

)+a+exp(1)
Rastrigin 10d +

∑d
i=1[x2

i −10cos2πxi]
Schwefel

∑d
i=1

[−xi sin
(p|xi|

)]
Griewank 1

4000
∑d

i=1 x2
i −

∏d
i=1 cos

(
xip

i

)
+1

Rosenbrock
∑d−1

i=1 [100(xi+1 − x2
i )2 + (xi −1)2]

Levy sin2(πw1) + ∑d−1
i=1 (wi − 1)2[1 + 10sin2(πwi + 1)] + (wd − 1)2[1 +

sin2(2πwd)]

Drop-Wave −1+cos(12
√

x2
1+x2

2 )

0.5(x2
1+x2

2)+2

Cross-in-Tray −0.0001

[∣∣∣∣∣sin(x1)sin(x2)exp

(∣∣∣∣∣100−
√

x2
1+x2

2

π

∣∣∣∣∣
)∣∣∣∣∣+1

]0.1

Michalewicz −∑d
i=1 sin(xi)

[
sin

( ix2
i
π

)]2m

function evaluations. Meanwhile, differential evolution’s function evaluation is calculated as the

product of population size, maximum iterations and dimensions of the cost function. The default

population size for DE is taken as the dimension of the cost function. The popsize parameter

in scipy’s implementation for DE is actually a multiplier for the population size and not the

population size itself [21]. It is important to note that since COBYLA and DE are scipy optimizers,

they run up to (but may be less) the max-iterations which is set by their own convergence criteria.

However, the tolerance for the convergence was changed so that most of the budget is utilised.

Lastly, 100 runs of the optimization process are represented in each box-plot graph comparing

optimization methods below. Refer to figures 5.1-5.12 on page 44-45 for visualization of the

commonly-used test function for optimization methods [23].

5.1.1 A Refresher on Other Non-Gradient Optimization Methods
Constrained Optimization by Linear Approximation (COBYLA)
COBYLA (Constrained Optimization BY Linear Approximations) is an optimization method that

is specifically designed to handle constraints. It is a derivative-free algorithm, making it suitable

for problems where the objective function’s derivatives are not readily available or are difficult

to compute. COBYLA operates on the principles of a trust-region approach to manage both the

variables and constraints of the optimization problem. The process starts with an initial guess at

the solution, around which a simplex is formed—a polytope with n+1 vertices in n-dimensional

space. COBYLA uses linear approximations of the objective function and the constraints within
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this simplex to guide its search for the optimum. During each iteration, it attempts to improve

upon the current solution by exploring within a trust region, which adjusts adaptively based on

the success of previous steps. The algorithm incrementally refines this region and the simplex’s

configuration to navigate towards the optimal solution while satisfying the constraints. This

approach is particularly useful for practical engineering problems where derivatives are either

unavailable or unreliable, providing a robust method for finding near-optimal solutions under

complex constraints. [19].

Differential Evolution (DE)
Differential Evolution (DE) is a gradient-free optimization strategy that evolves candidate

solutions through mutation and recombination. This optimization algorithm belongs to the family

of evolutionary algorithms. The mechanism of DE begins with the initialization of a randomly

generated population of candidate solutions. Each candidate, known as an individual or vector, is

represented by a set of parameters. Through the mutation step, DE generates new candidate

solutions by adding the weighted difference between two population vectors to a third vector. This

helps in exploring the solution space broadly. The crossover (or recombination) step enhances

the diversity of the population by combining the mutated vector with another predetermined

vector from the population, typically the best vector. Finally, the selection process determines

whether the newly generated vector or the existing vector in the population provides a better

solution based on the objective function value, with the superior one surviving into the next

generation.This iterative process continues until a stopping criterion is met, such as reaching a

maximum number of generations or achieving sufficient convergence of the population towards

the optimum. DE is particularly valued as it does not require functions to be continuous or

differentiable and is therefore well-suited for noisy functions and offers enhanced explorability.

The DE algorithm is rather effective in finding global optima in a wide range of challenging

optimization problems [21].
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Visualization of Commonly-used Test Functions

Figure 5.1: Sphere Function Figure 5.2: Beale Function

Figure 5.3: Goldstein-Price Function Figure 5.4: Ackley Function

Figure 5.5: Rastrigin Function Figure 5.6: Schwefel Function
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Figure 5.7: Griewank Function
Figure 5.8: Rosenbrock Function

Figure 5.9: Levy Function Figure 5.10: Drop-Wave Function

Figure 5.11: Cross-Tray Function
Figure 5.12: Michalewicz Function
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5.1.2 Graphical Results
Function 1: Sphere

This graph above represents the comparison of boxplots of different optimizers with a
10 dimensional Sphere function as the cost function. Each one of the boxplots represents 100
different runs of the optimizer. Each run has a budget for function evaluations set to 5000. To
achieve this we used 5 particles for PSO and HOPSO with 1000 iterations. The parameters λ and
tul for HOPSO was set to 0.01 and 1 respectively. For COBYLA the parameter maxiter was set
to 5000. For DE the parameter popsize was set to 1 and maxiter to 100. All of these optimizers
start with a uniform random parameters within the range [-5,5]. Other than PSO, rest of the
optimizers reach the minimum value which is 0.
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Function 2: Beale

This graph represents the comparison of boxplots of different optimizers with the Beale
function as the cost function. Each one of the boxplots represents 100 different runs of the
optimizer. Each run has a budget for function evaluations set to 1500. To achieve this we used 10
particles for PSO and HOPSO with 150 iterations. The parameters λ and tul for HOPSO was
set to 0.1 and 1, respectively. For COBYLA the parameter maxiter was set to 1500. For DE, the
parameter popsize was set to 10 and maxiter to 75. All of these optimizers start with a uniform
random parameters within the range [-5,5]. Other than COBYLA, the rest of the optimizers reach
the minimum value which is 0.
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Function 3: Goldstein-Price

This graph represents the comparison of boxplots of different optimizers with the Gold-
stein Price function as the cost function. Each one of the boxplots represents 100 different runs of
the optimizer. Each run has a budget for function evaluations set to 1500. To achieve this we used
5 particles for PSO and HOPSO with 200 iterations. The parameters λ and tul for HOPSO was
set to 0.01 and 1 respectively. For COBYLA the parameter maxiter was set to 1000. For DE the
parameter popsize was set to 3 and maxiter to 250. All of these optimizers start with a uniform
random parameters within the range [-5,5]. Other than COBYLA and DE, rest of the optimizers
reach the minimum value which is 3.
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Function 4: Ackley

This graph represents the comparison of boxplots of different optimizers with a 10 di-
mensional Ackley function as the cost function. Each one of the boxplots represents 100 different
runs of optimizer. Each run has a budget for function evaluations set to 5000. To achieve this we
used 10 particles for PSO and HOPSO with 500 iterations. The parameters λ and tul for HOPSO
was set to 0.02 and 1, respectively. For COBYLA the parameter maxiter was set to 5000. For
DE, the parameter popsize was set to 1 and maxiter to 500. All of these optimizers start with a
uniform random parameters within the range [-32.768,32.768]. Other than COBYLA and PSO,
rest of the optimizers reach the minimum value which is 0.
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Function 5: Rastrigin

This graph represents the comparison of boxplots of different optimizers with 10 dimen-
sional Rastrigin function as the cost function. Each one of the boxplots represents 100 different
runs of optimizer. Each run has a budget for function evaluations set to 5000. To achieve this we
used 10 particles for PSO and HOPSO with 500 iterations. The parameters λ and tul for HOPSO
was set to 0.027 and 1 respectively. For COBYLA the parameter maxiter was set to 5000. For
DE the parameter popsize was set to 1 and maxiter to 500. All of these optimizers start with a
uniform random parameters within the range [-5.12,5.12]. Other than COBYLA and PSO, rest of
the optimizers reach the minimum value which is 0.
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Function 6: Schwefel

This graph represents the comparison of boxplots of different optimizers with the 10-
dimensional Schwefel function as the cost function. Each of the boxplots represents 100 different
runs of the optimizer, with each run having a budget for function evaluations set to 1000. For the
damped PSO with amplitude (HOPSO), we used hyperparameters [1, 1, 2π, 0.05], 100 particles,
and a max cut of 2.05. The threshold was set to 10−4, with initial positions and velocities
uniformly random within the range [−500,500] and [−10,10], respectively. For the Standard
PSO, the hyperparameters were [0.7298, 2.05, 2.05], with 100 particles and max iterations
of 1000, starting with positions and velocities uniformly random within the same range. For
COBYLA, the maximum iterations were set to 100000 with a tolerance of 10−8, starting with
initial positions uniformly random within the range [−500,500]. For Differential Evolution (DE),
the initial positions were uniformly random within the range [−500,500], with a population size
of 1, maximum iterations of 1000, bounds of [−500,500] for each dimension, and a tolerance of
10−8. The comparison showcases the minima found by each optimizer across the 100 runs, with
HOPSO and DE optimizers reaching values close to the global minimum of the Schwefel function
more consistently compared to COBYLA and PSO.
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Function 7: Griewank

This graph represents the comparison of boxplots of different optimizers with the 10-
dimensional Griewank function as the cost function. Each of the boxplots represents 100 different
runs of the optimizer, with each run having a budget for function evaluations set to 1000. For
HOPSO, we used hyperparameters [1, 1, 2π, 0.02], 100 particles, and a max cut of 2.05. The
threshold was set to 10−4, with initial positions and velocities uniformly random within the range
[−600,600] and [−10,10] respectively. For the Standard PSO, the hyperparameters were [0.7298,
2.05, 2.05], with 100 particles and max iterations of 1000, starting with positions and velocities
uniformly random within the same range. For COBYLA, the maximum iterations were set to
100000 with a tolerance of 10−8, starting with initial positions uniformly random within the
range [−500,500]. For Differential Evolution (DE), the initial positions were uniformly random
within the range [−500,500], with a population size of 1, maximum iterations of 1000, bounds of
[−500,500] for each dimension, and a tolerance of 10−8. The comparison showcases the minima
found by each optimizer across the 100 runs, with HOPSO and DE optimizers reaching values
close to the global minimum of the Griewank function more consistently compared to COBYLA
and PSO.
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Function 8: Rosenbrock

This graph represents the comparison of boxplots of different optimizers with the 10-
dimensional Rosenbrock function as the cost function. Each of the boxplots represents 100
different runs of the optimizer, with each run having a budget for function evaluations set to 1000.
For HOPSO, we used hyperparameters [1, 1, 2π, 0.02], 100 particles, and a max cut of 2.05. The
threshold was set to 10−4, with initial positions and velocities uniformly random within the range
[−30,30] and [−10,10], respectively. For the Standard PSO, the hyperparameters were [0.7298,
2.05, 2.05], with 100 particles and max iterations of 1000, starting with positions and velocities
uniformly random within the same range. For COBYLA, the maximum iterations were set to
100000 with a tolerance of 10−8, starting with initial positions uniformly random within the
range [−500,500]. For Differential Evolution (DE), the initial positions were uniformly random
within the range [−500,500], with a population size of 1, maximum iterations of 1000, bounds of
[−500,500] for each dimension, and a tolerance of 10−8. The comparison showcases the minima
found by each optimizer across the 100 runs, with HOPSO and DE optimizers reaching values
close to the global minimum of the Rosenbrock function more consistently compared to COBYLA
and PSO.
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Function 9: Levy

This graph represents the comparison of boxplots of different optimizers with the Levy
function as the cost function. Each of the boxplots represents 100 different runs of the optimizer,
with each run having a budget for function evaluations set to 1000. For the HOPSO algorithm,
we used hyperparameters [1, 1, 2π, 0.01], 10 particles, and a max cut of 2.05. The threshold was
set to 10−4, with initial positions and velocities uniformly random within the range [−10,10]
and [−2,2], respectively. For the Standard PSO, the hyperparameters were [0.7298, 2.05, 2.05],
with 10 particles and max iterations of 1000, starting with positions and velocities uniformly
random within the same range. For COBYLA, the maximum iterations were set to 10000 with a
tolerance of 10−16, starting with initial positions uniformly random within the range [−10,10].
For Differential Evolution (DE), the initial positions were uniformly random within the range
[−10,10], with a population size of 1, maximum iterations of 1000, bounds of [−10,10] for each
dimension, and a tolerance of 10−16. The comparison showcases the minima found by each
optimizer across the 100 runs, with HOPSO and DE optimizers reaching values close to the
global minimum of the Levy function more consistently compared to COBYLA and PSO.
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Function 10: Drop-Wave

This graph represents the comparison of boxplots of different optimizers with the Drop
Wave function as the cost function. Each of the boxplots represents 100 different runs of the
optimizer, with each run having a budget for function evaluations set to 1000. For HOPSO, we
used hyperparameters [1, 1, 2π, 0.0001], 10 particles, and a max cut of 2.05. The threshold was
set to 10−4, with initial positions and velocities uniformly random within the range [−5.12,5.12]
and [−2,2] respectively. For the Standard PSO, the hyperparameters were [0.7298, 2.05, 2.05],
with 10 particles and max iterations of 1000, starting with positions and velocities uniformly
random within the same range. For COBYLA, the maximum iterations were set to 10000 with a
tolerance of 10−16, starting with initial positions uniformly random within the range [−5.12,5.12].
For Differential Evolution (DE), the initial positions were uniformly random within the range
[−5.12,5.12], with a population size of 1, maximum iterations of 1000, bounds of [−5.12,5.12]
for each dimension, and a tolerance of 10−16. The comparison showcases the minima found by
each optimizer across the 100 runs, with HOPSO and DE optimizers reaching values close to the
global minimum of the Drop Wave function more consistently compared to COBYLA and PSO.

55



CHAPTER 5. PROGRESS AND RESULTS

Function 11: Cross-in-Tray

This graph represents the comparison of boxplots of different optimizers with the Cross-
in-Tray function as the cost function. Each of the boxplots represents 100 different runs of the
optimizer, with each run having a budget for function evaluations set to 1000. For the HOPSO
algorithm, we used hyperparameters [1, 1, 2π, 0.02], 10 particles, and a max cut of 2.05. The
threshold was set to 10−4, with initial positions and velocities uniformly random within the range
[−10,10] and [−5,5], respectively. For the Standard PSO, the hyperparameters were [0.7298,
2.05, 2.05], with 10 particles and max iterations of 1000, starting with positions and velocities
uniformly random within the same range. For COBYLA, the maximum iterations were set to
10000 with a tolerance of 10−16, starting with initial positions uniformly random within the range
[−10,10]. For Differential Evolution (DE), the initial positions were uniformly random within
the range [−10,10], with a population size of 1, maximum iterations of 1000, bounds of [−10,10]
for each dimension, and a tolerance of 10−16. The comparison showcases the minima found by
each optimizer across the 100 runs, with HOPSO and DE optimizers reaching values close to the
global minimum of the Cross-in-Tray function more consistently compared to COBYLA and PSO.
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Function 12: Michalewicz

This graph represents the comparison of boxplots of different optimizers with the 5-
dimensional Michalewicz function as the cost function. Each of the boxplots represents 100
different runs of the optimizer, with each run having a budget for function evaluations set to
1000. For HOPSO, we used hyperparameters [1, 1, 2π, 0.01], 10 particles, and a max cut of 2.05.
The threshold was set to 10−4, with initial positions and velocities uniformly random within the
range [0,π] and [−1,1], respectively. For the Standard PSO, the hyperparameters were [0.7298,
2.05, 2.05], with 10 particles and max iterations of 1000, starting with positions and velocities
uniformly random within the same range. For COBYLA, the maximum iterations were set to
10000 with a tolerance of 10−16, starting with initial positions uniformly random within the
range [0,π]. For Differential Evolution (DE), the initial positions were uniformly random within
the range [0,π], with a population size of 1, maximum iterations of 1000, bounds of [0,π] for
each dimension, and a tolerance of 10−16. The comparison showcases the minima found by each
optimizer across the 100 runs, with HOPSO and DE optimizers reaching values close to the
global minimum of the Michalewicz function more consistently compared to COBYLA and PSO.

57



CHAPTER 5. PROGRESS AND RESULTS

Periodic Function in 4D
Since the Lithium Hydrite hamiltonian is periodic, it is reasonable to test the HOPSO algorithm
on simpler periodic functions. The HOPSO algorithm was applied to a few periodic functions, but
here we will be presenting the results of one specific 4-dimensional function which has a global
minima at -9.25999:

(5.1) f =−8.6+0.34 ·sin(1.5x1 − π

2
)+0.17 ·cos(1.5x2)−0.1 ·sin(1.5x3 + π

4
)+0.05 ·cos(1.5x4 − π

3
)

Below is the result of the performance of HOPSO on this function with a comparison to
the standard pso and a standard SciPy optimizer. This is done with a setting of 10 particles, and
100 000 iterations for 20 runs.

Figure 5.13: Optimizers comparison
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5.2 Application to Quantum Circuits

Modulo
A crucial feature to mention is the modulo operation. Specifically, since the cost functions that
are dealt with on quantum circuits are naturally periodic, we figure that it is necessary to apply
a modulo operation to ensure that all evaluations of the cost function remain within a specific
bound and avoid potential problems. Particularly, if we imagine a grid made up of squares from
0 to 2π, we do not restrict any particle and allow each particle to fly around beyond any single
square thereby taking full advantage of its searching capabilities. However, if the particle finds a
personal (or global) best position then a modulo operation is applied in order to ensure a proper
position of the attractor term (since the attractor (and amplitude) are reliant on the position
between personal- and global best positions). This description can be pictured as follows:
Imagine a line that goes from 0 to 2π followed by another continuing line also from 0 to 2π. If we
suppose a global best position was found at π and suddenly a personal best position was found
on the second line at π/2 (i.e. a quarter past the 2π marking), then the difference between the
personal and global best would be 3π/2 without a mod application. However, with a mod applied
then the distance between the personal and global best would really be π−π/2 which is equal
to π/2. It is important to note that had we applied a modulo on each position for each particle
irrespective of whether or not it has found a personal or global best position, we would be limiting
the particles search.

This is an important result because it solves the issue on how to deal with periodicity,
specifically solving the issue of misusing distances by using too large of a distance. This avoids
explosions. We have observed this fact that the modulo operation is vital for periodic functions for
these reasons stated above.
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Hydrogen Hamiltonian
To test the performance of our optimizer in VQE, we first chose the quantum system as the
Hydrogen molecule. We obtained two different Hamiltonians: one corresponding to a two qubit
system and the other corresponding to a four qubit system. Using hardware efficient ansatzs as
shown in 5.14, we compared the performance of the different optimizers in VQE.

Figure 5.14: Ansatz for VQE for 2-qubit Hydrogen and 4-qubit Hydrogen, respectively.
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Figure 5.15: (a) This graph represents the comparison of boxplots of different optimizers with
the expectation value of the Hamiltonian corresponding to two qubit Hydrogen molecule as the
cost function. Each one of the boxplots represents 100 different runs of optimizer. Each run has a
budget for function evaluations set to 500. To achieve this we used 10 particles with 50 iterations
for PSO and HOPSO. The parameters λ and tu for HOPSO was set to 0.1 and 4, respectively.
For COBYLA the parameter maxiter was set to 500. For DE the parameter popsize was set to
1 and maxiter to 80. All of these optimizers start with a uniform random parameters within
the range [-π,π]. All the optimizers reach the chemical precision(± 0.0015) of the real value
-1.86712. However, PSO performs poorly when compared to the rest of the optimizers. (b) This
graph represents the comparison of boxplots of different optimizers with the expectation value of
the Hamiltonian corresponding to four qubit Hydrogen molecule as the cost function. Each one
of the boxplots represents 100 different runs of optimizer. Each run has a budget for function
evaluations set to 10000. To achieve this we used 10 particles and 1000 iterations for PSO and
HOPSO. The parameters λ and tu for HOPSO was set to 0.1 and 4, respectively. For COBYLA,
the parameter maxiter was set to 10000. For DE, the parameter popsize was set to 1 and maxiter
to 625. All of these optimizers start with uniform random parameters within the range [-π,π].
All the optimizers reach the chemical precision(± 0.0015) of the real value of -1.86712. However,
PSO performs poorly when compared to the rest of the optimizers.
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From the above graphs it can be noticed that the HOPSO algorithm is being outper-
formed by the COBYLA optimizer, which is unlike what occurred when comparing performance
on the test-functions. We assume this is the case because the Hydrogen hamiltonian is too simple
of a system. That is, we currently believe that the budget is too low for this kind of optimization
method and hence the poor performance of HOPSO in comparison to COBYLA. For example, if
the system is too simple, one may only need a single particle in the PSO or HOPSO algorithm,
otherwise over-parameterization is taking place as the other particles (which are not needed) will
be incorrectly influencing the search in the system.

Lithium Hydrite Hamiltonian
We used the qiskit-nature package and PySCF to obtain the Hamiltonian for the LiH molecule.
The distance between the atoms was considered to be 1.5474 angstroms and we used the commonly
used sto3g as the basis set. We then applied the Jordan Wigner mapping to map the electronic
Hamiltonian to a qubit Hamiltonian. Lastly, we applied some reduction methods to taper the
qubits and obtained an 8-qubit Hamiltonian for LiH. The full hamiltonian can be found in the
appendix. For the ansatz, we chose to use a hardware efficient ansatz made up of 4 layers and
with 40 parameters. The circuit is also linearly entangled. Below is a figure of this ansatz:

Figure 5.16: 8 qubit, 4-layer Quantum Circuit

0-Layer Circuit
Firstly, the HOPSO algorithm was applied to Lithium Hydrite Hamiltonian but without any
CNOT gates in the circuit (that is, it was a 0-layer circuit with no entanglement involved). This
was done to observe the performance of HOPSO when applied to the simplest case of application
to LiH.

Below are the graphical results. These graphics are rather technical and differ from the
previous graphs as this is currently in a ‘work-in-progress’ stage. It is suitable to place these here
however, since these are results that are currently being developed.
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5.2. APPLICATION TO QUANTUM CIRCUITS

Figure 5.17: Box plots inside violin plots representing HOPSO’s performance against the standard
PSO. The minimum is at -8.92. The graph represents 8 runs for each box-plot in which each
run is done with 2 particles and without a strictly set number of iterations. Instead, there was
a stopping criteria in which reaching 10e-6 would cease the run. HOPSO’s settings include a
lambda of 0.005 and velocity was adjusted to be 100.

.

Figure 5.18: Another comparison of HOPSO to standard PSO with 7000 iterations.
.
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Figure 5.19: Box plot of HOPSO algorithm being run with various settings including initial
velocity-ranges and damping coefficients. We can see that a smaller lambda value is the parameter
that significantly improves the optimization. Note that dpso is the labelling used for HOPSO in
this graph.
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CONCLUSION AND OUTLOOK

This thesis has presented a new non-gradient optimization algorithm that is based on the popular
particle swarm optimization algorithm. This new algorithm – coined as ’HOPSO’– offers a strong
advantage against the PSO in the fact that it prevents explosions and has better tuning features.
That is, it is less sensitive to the tuning parameters and offers more control over them hence,
unlike the PSO, converging to a value is done in a more controlled manner with more flexibility
with less likeliness in premature convergence (getting stuck in a local minima). This was shown
to be true when applied to a set of standard benchmark test optimization functions and compared
to other non-gradient methods.

Since the algorithm that has been developed works well as a computational method, we
now seek to apply this to quantum computation. As stated at the end of the previus chapter, some
preliminary data on applying HOPSO to Hydrogen and LiH Hamiltonian’s has been obtained.
However this data, in the present stage, provides only an optimistic outlook without an in-depth
analysis.

This is largely due to two reasons: over-parameterization and limiting computational
resources. Firstly, by definition, every hardware-efficient ansatz is over-parameterized. To tackle
this issue, we will take inspiration the from machine learning community on how to deal with
over-parameterized systems. Secondly, it is difficult to study HOPSO on a hamiltonian such as
Lithium Hydrite as it takes a significant amount of time to run the computer and collect data
for such a large and complex function. Fortunately however, we have recently gained access to a
supercomputer and anticipate in its use during this summer and fall period.

Eventually, our plan is to work with quantum computers. We plan to witness the
performance of HOPSO applied onto VQE in the presence of (simulated) noise, and to use a finite
number of shots as opposed to simply statevector simulation.

In order to achieve our main goal in applying this newly-developed algorithm on real
quantum computers we need access to a quantum computer. IBM’s quantum computers have
been our primary source for such access however due to recent events, access to IBM’s quantum
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CHAPTER 6. CONCLUSION AND OUTLOOK

computer has been strictly limiting. Fortunately (again), we will be granted access to a quantum
computer by the end of this year as we have a collaboration with researchers at Masaryk
University in Brno, Czechia.

In my final concluding remarks, it is not yet clear on how to make HOPSO a powerful
algorithm when applied to VQE quantum circuits due to the more complex landscape and the
requirement of more computational power and this will be the focus for furthering our work in
this field. But we are optimistic and motivated in continuing this endeavour with this newly-
developed non-gradient optimization method, HOPSO.

Thank you for reading this thesis.
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Lithium Hydrite Hamiltonian

+ 0.0017100589060386672 * IIZIIXII
- 0.0017100589060386672 * IZIIIXZZ
+ 0.19570240962718122 * IIZIIZZZ
- 0.004121355295189862 * IIZIIZZX
+ 0.004121355295189862 * IZIIIIIX
- 0.005041332803018909 * IIZIIZXI
+ 0.005041332803018909 * IZIIIIXZ
+ 0.0017100589060386688 * IZIIIXII
- 0.0017100589060386688 * IIZIIXZZ
+ 0.0884684221257211 * IZZIIIZZ
+ 0.0008858660045390596 * IZZIIIZX
- 0.0008858660045390596 * IIIIIZIX
- 0.0039011347589671453 * IZZIIIXI
+ 0.0039011347589671453 * IIIIIZXZ
+ 0.4145960467361261 * ZIIZZZZZ
- 0.02856906194286898 * ZIIZZZZX
+ 0.02856906194286898 * ZZZZZIIX
- 0.03452608676060419 * ZIIZZZXI
+ 0.03452608676060419 * ZZZZZIXZ
+ 0.012096681162908688 * ZZZZZXII
- 0.012096681162908688 * ZIIZZXZZ
- 0.028569061942868984 * ZIIZXZZZ
+ 0.028569061942868984 * IZZIXZZZ
+ 0.003501247382918566 * ZIIZXZZX
- 0.003501247382918566 * IZZIXZZX
- 0.003501247382918566 * ZZZZXIIX
+ 0.003501247382918566 * IIIIXIIX
+ 0.002844684118188048 * ZIIZXZXI
- 0.002844684118188048 * IZZIXZXI
- 0.002844684118188048 * ZZZZXIXZ
+ 0.002844684118188048 * IIIIXIXZ
- 0.0021397473591264747 * ZZZZXXII
+ 0.0021397473591264747 * IIIIXXII
+ 0.0021397473591264747 * ZIIZXXZZ
- 0.0021397473591264747 * IZZIXXZZ
- 0.03452608676060419 * ZIIXIZZZ
+ 0.03452608676060419 * IZZXZZZZ
+ 0.002844684118188048 * ZIIXIZZX
- 0.002844684118188048 * IZZXZZZX
- 0.002844684118188048 * ZZZXIIIX

+ 0.002844684118188048 * IIIXZIIX
+ 0.0053971349650047615 * ZIIXIZXI
- 0.0053971349650047615 * IZZXZZXI
- 0.0053971349650047615 * ZZZXIIXZ
+ 0.0053971349650047615 * IIIXZIXZ
- 0.0004554890480375092 * ZZZXIXII
+ 0.0004554890480375092 * IIIXZXII
+ 0.0004554890480375092 * ZIIXIXZZ
- 0.0004554890480375092 * IZZXZXZZ
+ 0.002454631350440893 * ZIXIIZII
- 0.002454631350440893 * IZXZZZII
- 0.002454631350440893 * ZZXIIIZZ
+ 0.002454631350440893 * IIXZZIZZ
+ 0.002454631350440893 * ZXIIIZII
- 0.002454631350440893 * IXZZZZII
- 0.002454631350440893 * ZXZIIIZZ
+ 0.002454631350440893 * IXIZZIZZ
+ 0.012096681162908688 * XZZIIZZZ
- 0.012096681162908688 * XIIZZZZZ
- 0.0021397473591264742 * XZZIIZZX
+ 0.0021397473591264742 * XIIZZZZX
+ 0.0021397473591264742 * XIIIIIIX
- 0.0021397473591264742 * XZZZZIIX
- 0.00045548904803750914 * XZZIIZXI
+ 0.00045548904803750914 * XIIZZZXI
+ 0.00045548904803750914 * XIIIIIXZ
- 0.00045548904803750914 * XZZZZIXZ
+ 0.0019750445457964406 * XIIIIXII
- 0.0019750445457964406 * XZZZZXII
- 0.0019750445457964406 * XZZIIXZZ
+ 0.0019750445457964406 * XIIZZXZZ
+ 0.09331458087068703 * IZZIZZZZ
+ 0.001684277431668603 * IZZIZZZX
- 0.001684277431668603 * IIIIZIIX
- 0.004123040337830278 * IZZIZZXI
+ 0.004123040337830278 * IIIIZIXZ
- 0.0016120261914684597 * IIIIZXII
+ 0.0016120261914684597 * IZZIZXZZ
- 0.0030917706989499424 * IZZYYZZZ
- 0.0030917706989499424 * IZZXXZZZ

+ 0.0008758435998611308 * IZZYYZZX
+ 0.0008758435998611308 * IZZXXZZX
- 0.0008758435998611308 * IIIYYIIX
- 0.0008758435998611308 * IIIXXIIX
- 5.172669061580785e-05 * IZZYYZXI
- 5.172669061580785e-05 * IZZXXZXI
+ 5.172669061580785e-05 * IIIYYIXZ
+ 5.172669061580785e-05 * IIIXXIXZ
- 0.0003673688232102457 * IIIYYXII
- 0.0003673688232102457 * IIIXXXII
+ 0.0003673688232102457 * IZZYYXZZ
+ 0.0003673688232102457 * IZZXXXZZ
- 0.0018832437601555981 * IZYZYZII
- 0.0018832437601555981 * IZXZXZII
+ 0.0018832437601555981 * IIYZYIZZ
+ 0.0018832437601555981 * IIXZXIZZ
- 0.0018832437601555983 * IYZZYZII
- 0.0018832437601555983 * IXZZXZII
+ 0.0018832437601555983 * IYIZYIZZ
+ 0.0018832437601555983 * IXIZXIZZ
+ 0.008763876122974601 * YIIZYZZZ
+ 0.008763876122974601 * XIIZXZZZ
- 0.0013069184709863311 * YIIZYZZX
- 0.0013069184709863311 * XIIZXZZX
+ 0.0013069184709863311 * YZZZYIIX
+ 0.0013069184709863311 * XZZZXIIX
+ 2.1449569520233115e-05 * YIIZYZXI
+ 2.1449569520233115e-05 * XIIZXZXI
- 2.1449569520233115e-05 * YZZZYIXZ
- 2.1449569520233115e-05 * XZZZXIXZ
- 6.0105529646887575e-05 * YZZZYXII
- 6.0105529646887575e-05 * XZZZXXII
+ 6.0105529646887575e-05 * YIIZYXZZ
+ 6.0105529646887575e-05 * XIIZXXZZ
+ 0.09895669236867029 * IZZZIZZZ
- 0.0028396620743700207 * IZZZIZZX
+ 0.0028396620743700207 * IIIZIIIX
+ 0.00047905267283199714 * IZZZIZXI
- 0.00047905267283199714 * IIIZIIXZ
+ 0.0025090192231687755 * IIIZIXII
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- 0.0025090192231687755 * IZZZIXZZ
- 0.0025623903948187787 * IZYYIZII
- 0.0025623903948187787 * IZXXIZII
+ 0.0025623903948187787 * IIYYIIZZ
+ 0.0025623903948187787 * IIXXIIZZ
- 0.0025623903948187796 * IYZYIZII
- 0.0025623903948187796 * IXZXIZII
+ 0.0025623903948187796 * IYIYIIZZ
+ 0.0025623903948187796 * IXIXIIZZ
- 0.00437298071633473 * YIIYIZZZ
- 0.00437298071633473 * XIIXIZZZ
+ 0.0009903574427628007 * YIIYIZZX
+ 0.0009903574427628007 * XIIXIZZX
- 0.0009903574427628007 * YZZYIIIX
- 0.0009903574427628007 * XZZXIIIX
- 0.0011129841175505399 * YIIYIZXI
- 0.0011129841175505399 * XIIXIZXI
+ 0.0011129841175505399 * YZZYIIXZ
+ 0.0011129841175505399 * XZZXIIXZ
- 0.0010639354560186233 * YZZYIXII
- 0.0010639354560186233 * XZZXIXII
+ 0.0010639354560186233 * YIIYIXZZ
+ 0.0010639354560186233 * XIIXIXZZ
+ 0.0015148814402507484 * YIYIIZII
+ 0.0015148814402507484 * XIXIIZII
- 0.0015148814402507484 * YZYIIIZZ
- 0.0015148814402507484 * XZXIIIZZ
+ 0.0015148814402507484 * YYIIIZII
+ 0.0015148814402507484 * XXIIIZII
- 0.0015148814402507484 * YYZIIIZZ
- 0.0015148814402507484 * XXZIIIZZ
+ 0.09044346667151755 * ZZZIIZZZ
+ 0.0009459715341859472 * ZZZIIZZX
- 0.0009459715341859472 * ZIIIIIIX
- 0.0028371993029485216 * ZZZIIZXI
+ 0.0028371993029485216 * ZIIIIIXZ
- 0.0006523490210767924 * ZIIIIXII
+ 0.0006523490210767924 * ZZZIIXZZ
+ 0.053149299296670505 * IIIIIIZZ
+ 0.0042801745632079355 * IZZIIYYZ
+ 0.0042801745632079355 * IZZIIXXZ
+ 0.004958861420478259 * IZZIIYIY
+ 0.004958861420478259 * IZZIIXIX
+ 0.13045931889894347 * IIZIIIIZ
+ 0.0022054582814017175 * IIZIIIYY
+ 0.0022054582814017175 * IIZIIIXX
+ 0.001877634506430728 * IZIIIYZY
+ 0.001877634506430728 * IZIIIXZX
+ 0.1304593188989435 * IZIIIIIZ
+ 0.002205458281401719 * IZIIIIYY
+ 0.002205458281401719 * IZIIIIXX
+ 0.0018776345064307207 * IIZIIYZY
+ 0.0018776345064307207 * IIZIIXZX
+ 0.08310642186719826 * IIIIIZIZ
+ 0.002822853017034635 * IIIIIZYY

+ 0.002822853017034635 * IIIIIZXX
+ 0.09331458087068703 * ZZZZZIIZ
- 0.0030917706989499424 * ZZZZZIYY
- 0.0030917706989499424 * ZZZZZIXX
+ 0.0087638761229746 * ZIIZZYZY
+ 0.0087638761229746 * ZIIZZXZX
+ 0.001684277431668603 * ZZZZXIIZ
- 0.001684277431668603 * IIIIXIIZ
+ 0.0008758435998611308 * ZZZZXIYY
- 0.0008758435998611308 * IIIIXIYY
+ 0.0008758435998611308 * ZZZZXIXX
- 0.0008758435998611308 * IIIIXIXX
- 0.0013069184709863311 * ZIIZXYZY
+ 0.0013069184709863311 * IZZIXYZY
- 0.0013069184709863311 * ZIIZXXZX
+ 0.0013069184709863311 * IZZIXXZX
- 0.004123040337830278 * ZZZXIIIZ
+ 0.004123040337830278 * IIIXZIIZ
- 5.172669061580785e-05 * ZZZXIIYY
+ 5.172669061580785e-05 * IIIXZIYY
- 5.172669061580785e-05 * ZZZXIIXX
+ 5.172669061580785e-05 * IIIXZIXX
+ 2.1449569520233115e-05 * ZIIXIYZY
- 2.1449569520233115e-05 * IZZXZYZY
+ 2.1449569520233115e-05 * ZIIXIXZX
- 2.1449569520233115e-05 * IZZXZXZX
- 0.0018832437601555981 * ZZYIIIZY
+ 0.0018832437601555981 * IIYZZIZY
- 0.0018832437601555981 * ZZXIIIZX
+ 0.0018832437601555981 * IIXZZIZX
- 0.0018832437601555983 * ZYZIIIZY
+ 0.0018832437601555983 * IYIZZIZY
- 0.0018832437601555983 * ZXZIIIZX
+ 0.0018832437601555983 * IXIZZIZX
- 0.0016120261914684597 * XIIIIIIZ
+ 0.0016120261914684597 * XZZZZIIZ
- 0.0003673688232102457 * XIIIIIYY
+ 0.0003673688232102457 * XZZZZIYY
- 0.0003673688232102457 * XIIIIIXX
+ 0.0003673688232102457 * XZZZZIXX
- 6.010552964688759e-05 * XZZIIYZY
+ 6.010552964688759e-05 * XIIZZYZY
- 6.010552964688759e-05 * XZZIIXZX
+ 6.010552964688759e-05 * XIIZZXZX
+ 0.12274244052545143 * IIIIZIIZ
+ 0.011925529284481389 * IIIIZIYY
+ 0.011925529284481389 * IIIIZIXX
- 0.03239529731986452 * IZZIZYZY
- 0.03239529731986452 * IZZIZXZX
+ 0.011925529284481389 * IIIYYIIZ
+ 0.011925529284481389 * IIIXXIIZ
+ 0.003139482375497464 * IIIYYIYY
+ 0.003139482375497464 * IIIXXIYY
+ 0.003139482375497464 * IIIYYIXX
+ 0.003139482375497464 * IIIXXIXX

- 0.008499158469806097 * IZZYYYZY
- 0.008499158469806097 * IZZXXYZY
- 0.008499158469806097 * IZZYYXZX
- 0.008499158469806097 * IZZXXXZX
- 0.005928916533102496 * IIXZYIZY
+ 0.005928916533102496 * IIYZXIZY
+ 0.005928916533102496 * IIYZYIZX
+ 0.005928916533102496 * IIXZXIZX
- 0.005928916533102498 * IXIZYIZY
+ 0.005928916533102498 * IYIZXIZY
+ 0.005928916533102498 * IYIZYIZX
+ 0.005928916533102498 * IXIZXIZX
- 0.03239529731986452 * YZZZYIIZ
- 0.03239529731986452 * XZZZXIIZ
- 0.008499158469806097 * YZZZYIYY
- 0.008499158469806097 * XZZZXIYY
- 0.008499158469806097 * YZZZYIXX
- 0.008499158469806097 * XZZZXIXX
+ 0.030846096963274373 * YIIZYYZY
+ 0.030846096963274373 * XIIZXYZY
+ 0.030846096963274373 * YIIZYXZX
+ 0.030846096963274373 * XIIZXXZX
+ 0.05628878167216797 * IIIZIIIZ
- 0.0016974649623867296 * IIIZIIYY
- 0.0016974649623867296 * IIIZIIXX
+ 0.0027372506123350326 * IZZZIYZY
+ 0.0027372506123350326 * IZZZIXZX
- 0.004809206450331084 * IIXYIIZY
+ 0.004809206450331084 * IIYXIIZY
+ 0.004809206450331084 * IIYYIIZX
+ 0.004809206450331084 * IIXXIIZX
- 0.004809206450331085 * IXIYIIZY
+ 0.004809206450331085 * IYIXIIZY
+ 0.004809206450331085 * IYIYIIZX
+ 0.004809206450331085 * IXIXIIZX
+ 0.012779333033014033 * YZZYIIIZ
+ 0.012779333033014033 * XZZXIIIZ
+ 0.002221610808143227 * YZZYIIYY
+ 0.002221610808143227 * XZZXIIYY
+ 0.002221610808143227 * YZZYIIXX
+ 0.002221610808143227 * XZZXIIXX
- 0.007859003265895824 * YIIYIYZY
- 0.007859003265895824 * XIIXIYZY
- 0.007859003265895824 * YIIYIXZX
- 0.007859003265895824 * XIIXIXZX
+ 0.004890562019499969 * YZXIIIZY
- 0.004890562019499969 * XZYIIIZY
- 0.004890562019499969 * YZYIIIZX
- 0.004890562019499969 * XZXIIIZX
+ 0.004890562019499969 * YXZIIIZY
- 0.004890562019499969 * XYZIIIZY
- 0.004890562019499969 * YYZIIIZX
- 0.004890562019499969 * XXZIIIZX
+ 0.11395251883047261 * ZIIIIIIZ
+ 0.010681856282930459 * ZIIIIIYY
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+ 0.010681856282930459 * ZIIIIIXX
- 0.03438974814048047 * ZZZIIYZY
- 0.03438974814048047 * ZZZIIXZX
+ 0.13073488182192297 * IIZIIIZI
- 0.004347376649778053 * IZIIIYYI
- 0.004347376649778053 * IZIIIXXI
+ 0.13073488182192297 * IZIIIIZI
- 0.004347376649778064 * IIZIIYYI
- 0.004347376649778064 * IIZIIXXI
+ 0.0538525443830966 * IIIIIZZI
+ 0.09895669236867029 * ZZZZZIZI
- 0.00437298071633473 * ZIIZZYYI
- 0.00437298071633473 * ZIIZZXXI
- 0.002839662074370021 * ZZZZXIZI
+ 0.002839662074370021 * IIIIXIZI
+ 0.0009903574427628007 * ZIIZXYYI
- 0.0009903574427628007 * IZZIXYYI
+ 0.0009903574427628007 * ZIIZXXXI
- 0.0009903574427628007 * IZZIXXXI
+ 0.00047905267283199714 * ZZZXIIZI
- 0.00047905267283199714 * IIIXZIZI
- 0.0011129841175505399 * ZIIXIYYI
+ 0.0011129841175505399 * IZZXZYYI
- 0.0011129841175505399 * ZIIXIXXI
+ 0.0011129841175505399 * IZZXZXXI
- 0.002562390394818779 * ZZYIIIYI
+ 0.002562390394818779 * IIYZZIYI
- 0.002562390394818779 * ZZXIIIXI
+ 0.002562390394818779 * IIXZZIXI
- 0.0025623903948187796 * ZYZIIIYI
+ 0.0025623903948187796 * IYIZZIYI
- 0.0025623903948187796 * ZXZIIIXI
+ 0.0025623903948187796 * IXIZZIXI
+ 0.002509019223168775 * XIIIIIZI
- 0.002509019223168775 * XZZZZIZI
- 0.0010639354560186233 * XZZIIYYI
+ 0.0010639354560186233 * XIIZZYYI
- 0.0010639354560186233 * XZZIIXXI
+ 0.0010639354560186233 * XIIZZXXI
+ 0.05628878167216797 * IIIIZIZI
+ 0.012779333033014033 * IZZIZYYI
+ 0.012779333033014033 * IZZIZXXI
- 0.00169746496238673 * IIIYYIZI
- 0.00169746496238673 * IIIXXIZI
+ 0.0022216108081432265 * IZZYYYYI
+ 0.0022216108081432265 * IZZXXYYI
+ 0.0022216108081432265 * IZZYYXXI
+ 0.0022216108081432265 * IZZXXXXI
- 0.004809206450331084 * IIXZYIYI
+ 0.004809206450331084 * IIYZXIYI
+ 0.004809206450331084 * IIYZYIXI
+ 0.004809206450331084 * IIXZXIXI
- 0.004809206450331085 * IXIZYIYI
+ 0.004809206450331085 * IYIZXIYI
+ 0.004809206450331085 * IYIZYIXI

+ 0.004809206450331085 * IXIZXIXI
+ 0.0027372506123350326 * YZZZYIZI
+ 0.0027372506123350326 * XZZZXIZI
- 0.007859003265895824 * YIIZYYYI
- 0.007859003265895824 * XIIZXYYI
- 0.007859003265895824 * YIIZYXXI
- 0.007859003265895824 * XIIZXXXI
+ 0.08460131391824206 * IIIZIIZI
- 0.009002501243838557 * IZZZIYYI
- 0.009002501243838557 * IZZZIXXI
- 0.010323101079295216 * IIXYIIYI
+ 0.010323101079295216 * IIYXIIYI
+ 0.010323101079295216 * IIYYIIXI
+ 0.010323101079295216 * IIXXIIXI
- 0.010323101079295216 * IXIYIIYI
+ 0.010323101079295216 * IYIXIIYI
+ 0.010323101079295216 * IYIYIIXI
+ 0.010323101079295216 * IXIXIIXI
- 0.009002501243838557 * YZZYIIZI
- 0.009002501243838557 * XZZXIIZI
+ 0.006587584190054828 * YIIYIYYI
+ 0.006587584190054828 * XIIXIYYI
+ 0.006587584190054828 * YIIYIXXI
+ 0.006587584190054828 * XIIXIXXI
+ 0.0034522696762380027 * YZXIIIYI
- 0.0034522696762380027 * XZYIIIYI
- 0.0034522696762380027 * YZYIIIXI
- 0.0034522696762380027 * XZXIIIXI
+ 0.0034522696762380044 * YXZIIIYI
- 0.0034522696762380044 * XYZIIIYI
- 0.0034522696762380044 * YYZIIIXI
- 0.0034522696762380044 * XXZIIIXI
+ 0.06044012857315143 * ZIIIIIZI
+ 0.01095277357379615 * ZZZIIYYI
+ 0.01095277357379615 * ZZZIIXXI
+ 0.2707726623751816 * IZZIIIII
+ 0.1294881663056809 * IIZIIZII
+ 0.19570240962718116 * ZZIZZIII
- 0.004121355295189859 * ZZIZXIII
+ 0.004121355295189859 * IIZIXIII
- 0.005041332803018909 * ZZIXIIII
+ 0.005041332803018909 * IIZXZIII
+ 0.0015148814402507484 * ZIYIIYII
- 0.0015148814402507484 * IZYZZYII
+ 0.0015148814402507484 * ZIXIIXII
- 0.0015148814402507484 * IZXZZXII
+ 0.0017100589060386672 * XIZIIIII
- 0.0017100589060386672 * XZIZZIII
+ 0.13045931889894347 * IIZIZIII
+ 0.0022054582814017175 * IIZYYIII
+ 0.0022054582814017175 * IIZXXIII
+ 0.004890562019499968 * IZXZYYII
- 0.004890562019499968 * IZYZXYII
- 0.004890562019499968 * IZYZYXII
- 0.004890562019499968 * IZXZXXII

+ 0.0018776345064307276 * YZIZYIII
+ 0.0018776345064307276 * XZIZXIII
+ 0.13073488182192297 * IIZZIIII
+ 0.003452269676238003 * IZXYIYII
- 0.003452269676238003 * IZYXIYII
- 0.003452269676238003 * IZYYIXII
- 0.003452269676238003 * IZXXIXII
- 0.004347376649778053 * YZIYIIII
- 0.004347376649778053 * XZIXIIII
+ 0.0084345697568455 * IXXIIIII
+ 0.0084345697568455 * IYYIIIII
- 0.004902761294508434 * YIXIIYII
+ 0.004902761294508434 * XIYIIYII
+ 0.004902761294508434 * YIYIIXII
+ 0.004902761294508434 * XIXIIXII
+ 0.1294881663056809 * ZIZIIIII
+ 0.12948816630568094 * IZIIIZII
+ 0.19570240962718122 * ZIZZZIII
- 0.004121355295189862 * ZIZZXIII
+ 0.004121355295189862 * IZIIXIII
- 0.005041332803018909 * ZIZXIIII
+ 0.005041332803018909 * IZIXZIII
+ 0.0015148814402507487 * ZYIIIYII
- 0.0015148814402507487 * IYZZZYII
+ 0.0015148814402507487 * ZXIIIXII
- 0.0015148814402507487 * IXZZZXII
+ 0.0017100589060386688 * XZIIIIII
- 0.0017100589060386688 * XIZZZIII
+ 0.1304593188989435 * IZIIZIII
+ 0.002205458281401719 * IZIYYIII
+ 0.002205458281401719 * IZIXXIII
+ 0.004890562019499969 * IXZZYYII
- 0.004890562019499969 * IYZZXYII
- 0.004890562019499969 * IYZZYXII
- 0.004890562019499969 * IXZZXXII
+ 0.0018776345064307207 * YIZZYIII
+ 0.0018776345064307207 * XIZZXIII
+ 0.13073488182192297 * IZIZIIII
+ 0.003452269676238004 * IXZYIYII
- 0.003452269676238004 * IYZXIYII
- 0.003452269676238004 * IYZYIXII
- 0.003452269676238004 * IXZXIXII
- 0.004347376649778064 * YIZYIIII
- 0.004347376649778064 * XIZXIIII
- 0.004902761294508436 * YXIIIYII
+ 0.004902761294508436 * XYIIIYII
+ 0.004902761294508436 * YYIIIXII
+ 0.004902761294508436 * XXIIIXII
+ 0.12948816630568094 * ZZIIIIII
+ 0.09044346667151755 * ZZZZZZII
+ 0.0009459715341859472 * ZZZZXZII
- 0.0009459715341859472 * IIIIXZII
- 0.0028371993029485216 * ZZZXIZII
+ 0.0028371993029485216 * IIIXZZII
- 0.0006523490210767925 * XIIIIZII
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+ 0.0006523490210767925 * XZZZZZII
+ 0.11395251883047261 * IIIIZZII
+ 0.01068185628293046 * IIIYYZII
+ 0.01068185628293046 * IIIXXZII
- 0.03438974814048047 * YZZZYZII
- 0.03438974814048047 * XZZZXZII
+ 0.06044012857315143 * IIIZIZII
+ 0.01095277357379615 * YZZYIZII
+ 0.01095277357379615 * XZZXIZII
+ 0.11384335176465168 * ZIIIIZII
+ 0.08981333348776849 * ZZZZIIII
+ 0.0002470865807618955 * ZZZXXIII
+ 0.0002470865807618955 * ZZZYYIII
- 0.006624128763848125 * XIIIXIII
- 0.006624128763848125 * YIIIYIII
- 0.003247196737969148 * ZZZXZIII

+ 0.003247196737969148 * IIIXIIII
- 0.0029189446624547895 * XIIIZIII
+ 0.0029189446624547895 * XZZZIIII
- 0.00038881839273047865 * XIIYYIII
- 0.0013577262659730466 * XIIXXIII
- 0.0009689078732425674 * YIIYXIII
- 0.0009689078732425674 * YZZYXIII
- 0.0013577262659730466 * XZZXXIII
- 0.00038881839273047865 * XZZYYIII
+ 0.09355955740366553 * ZZZIZIII
+ 0.004828469764372238 * XIIXZIII
+ 0.004828469764372238 * YIIYZIII
- 0.0028913887649858303 * ZZZIXIII
+ 0.0028913887649858303 * IIIZXIII
+ 0.001396035105618235 * XIIZIIII
- 0.001396035105618235 * XZZIZIII

+ 0.0884684221257211 * IZZZZIII
+ 0.0008858660045390596 * IZZZXIII
- 0.0008858660045390596 * ZIIIXIII
- 0.0039011347589671453 * IZZXIIII
+ 0.0039011347589671453 * ZIIXZIII
+ 0.053149299296670505 * IIIZZIII
+ 0.0042801745632079355 * YZZYZIII
+ 0.0042801745632079355 * XZZXZIII
+ 0.004958861420478259 * YZZIYIII
+ 0.004958861420478259 * XZZIXIII
+ 0.08310642186719826 * ZIIIZIII
+ 0.002822853017034635 * ZIIYYIII
+ 0.002822853017034635 * ZIIXXIII
+ 0.0538525443830966 * ZIIZIIII

71





BIBLIOGRAPHY

[1] S. AXLER, Linear Algebra Done Right, Springer, 1996.

[2] L. E. BALLENTINE, Quantum Mechanics: A Modern Development, World Scientific, 1998.

[3] P. BENIOFF, The Computer as a Physical System: A Microscopic Quantum Mechanical
Hamiltonian Model of Computers as Represented by Turing Machines, Springer, 1980.

[4] M. CLERC AND J. KENNEDY, The particle swarm-explosion, stability, and convergence in a
multidimensional complex space, IEEE Transactions on Evolutionary Computation, 6
(2002), pp. 58–73.

[5] C. COHEN-TANNOUDJI, B. DIU, AND F. LALOË, Quantum Mechanics, Volume 1, Wiley, 1977.

[6] J. B. CONWAY, A Course in Functional Analysis, Springer, 1990.

[7] P. DIRAC, The Principles of Quantum Mechanics, Oxford University Press, 1981.

[8] R. C. EBERHART AND J. KENNEDY, Particle swarm optimization, Proceedings of IEEE
International Conference on Neural Networks, 4 (1995), pp. 1942–1948.

[9] D. J. GRIFFITHS, Introduction to Quantum Mechanics, Pearson Prentice Hall, 2004.

[10] Z. HOLMES, K. SHARMA, M. CEREZO, AND P. J. COLES, Connecting ansatz expressibility to
gradient magnitudes and barren plateaus, PRX Quantum, 3 (2022), p. 010313.

[11] A. KANDALA, A. MEZZACAPO, K. TEMME, M. TAKITA, M. BRINK, J. M. CHOW, AND J. M.
GAMBETTA, Hardware-efficient variational quantum eigensolver for small molecules and
quantum magnets, Nature, 549 (2017), pp. 242–246.

[12] J. KENNEDY AND R. EBERHART, Particle swarm optimization, in Proceedings of ICNN’95 -
International Conference on Neural Networks, vol. 4, IEEE, 1995, pp. 1942–1948.

[13] J. MCCLEAN, S. BOIXO, V. SMELYANSKIY, AND ET AL., Barren plateaus in quantum neural
network training landscapes, Nature Communications, 9 (2018), p. 4812.

[14] J. R. MCCLEAN, J. ROMERO, R. BABBUSH, AND A. ASPURU-GUZIK, The theory of varia-
tional hybrid quantum-classical algorithms, New Journal of Physics, 18 (2016), p. 023023.

[15] M. A. NIELSEN AND I. L. CHUANG, Quantum Computation and Quantum Information,
Cambridge University Press, 2010.

73



BIBLIOGRAPHY

[16] E. OZCAN AND C. MOHAN, Particle swarm optimization: surfing the waves, Proceedings of
the 1998 IEEE International Conference on Evolutionary Computation (IEEE World
Congress on Computational Intelligence), (1998), pp. 1939–1944.

[17] A. PERUZZO, J. MCCLEAN, P. SHADBOLT, M.-H. YUNG, X.-Q. ZHOU, P. J. LOVE,
A. ASPURU-GUZIK, AND J. L. O’BRIEN, A variational eigenvalue solver on a photonic
quantum processor, Nature Communications, 5 (2014), p. 4213.

[18] R. POLI, J. KENNEDY, AND T. BLACKWELL, Particle swarm optimization, Swarm Intelli-
gence, 1 (2007), pp. 33–57.

[19] M. J. POWELL, A direct search optimization method that models the objective and constraint
functions by linear interpolation, Advances in Optimization and Numerical Analysis,
(1994), pp. 51–67.

[20] J. SAKURAI, Modern Quantum Mechanics, Addison-Wesley, 2011.

[21] R. STORN AND K. PRICE, Differential evolution - a simple and efficient heuristic for global
optimization over continuous spaces, Journal of Global Optimization, 11 (1997), pp. 341–
359.

[22] S. SURJANOVIC AND D. BINGHAM, Virtual library of simulation experiments: Test functions
and datasets.

https://www.sfu.ca/~ssurjano/optimization.html, 2023.
Accessed: 2024-06-18.

[23] S. SURJANOVIC AND D. BINGHAM, Virtual library of simulation experiments: Test functions
and datasets, 2024.

[24] A. SZABO AND N. S. OSTLUND, Modern Quantum Chemistry: Introduction to Advanced
Electronic Structure Theory, Dover Publications, 2012.

[25] J. TILLY, H. CHEN, S. CAO, D. PICOZZI, K. SETIA, Y. LI, E. GRANT, L. WOSSNIG, I. RUNG-
GER, G. H. BOOTH, AND J. TENNYSON, The variational quantum eigensolver: A review
of methods and best practices, Physics Reports, 986 (2022), p. 1–128.

[26] J. S. TOWNSEND, A Modern Approach to Quantum Mechanics, University Science Books,
2012.

[27] P. VIRTANEN, R. GOMMERS, T. E. OLIPHANT, M. HABERLAND, T. REDDY, D. COURNA-
PEAU, E. BUROVSKI, P. PETERSON, W. WECKESSER, J. BRIGHT, S. J. VAN DER WALT,
M. BRETT, J. WILSON, K. J. MILLMAN, N. MAYOROV, A. R. J. NELSON, E. JONES,
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